Self-adaptive proximal algorithms for equilibrium problems in Hadamard space

Автор(и)

  • Vladimir V. Semenov Faculty of Computer Science and Cybernetics, Taras Shevchenko National University of Kyiv https://orcid.org/0000-0002-3280-8245
  • Vladislava Chernorai Faculty of Computer Science and Cybernetics, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
  • Serhii Denysov

DOI:

https://doi.org/10.31713/MCIT.2025.081

Ключові слова:

Hadamard space, equilibrium problem, algorithms, convergence

Анотація

We consider a new self-adaptive algorithms for equilibrium problem in Hadamard spaces. At each step of the algorithms, the sequential minimization of two special strongly convex functions is performed. Our self-adaptive algorithms do not calculate bifunction values at additional points and do not require knowledge of bifunctions' Lipschitz constants. For pseudomonotone bifunctions of Lipschitz-type, theorems on weak convergence of sequences generated by algorithms are proved.

##submission.downloads##

Опубліковано

2025-11-06

Як цитувати

Semenov, V. V., Chernorai, V., & Denysov, S. (2025). Self-adaptive proximal algorithms for equilibrium problems in Hadamard space. Моделювання, керування та інформаційні технології, (8), 264–266. https://doi.org/10.31713/MCIT.2025.081