0 Modeling, control &

information technologies

Numerical Optimization of a Pseudoparabolic
Systems with Memory

Andrii Anikushyn

Faculty of Computer Science and Cybernetics
Taras Shevchenko National University of Kyiv
Kyiv, Ukraine
andrii.anikushyn@knu.ua

Abstract—We employ the method of a priori inequalities
in negative norms to prove the existence of a pointwise
optimal control for the regularized problem corresponding
to a time-nonlocal pseudoparabolic integro-differential
equation with a Volterra-type integral term. Certain
differential properties of the cost functional are
investigated, and a numerical example illustrating the
computation of the optimal control is presented.
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1. INTRODUCTION

Within applied mathematics, considerable interest is
directed toward pseudoparabolic differential and integro-
differential formulations. Equations of this character
serve as analytical frameworks for a broad spectrum of
physical phenomena, encompassing delayed radiation
transport, two-phase flow in porous structures influenced
by dynamic capillarity or hysteretic behavior, ionic
diffusion within soils, and thermal propagation through
heterogeneous composites (see, for instance, [1], [2], and
sources cited therein).

In [1], [3] S.I. Lyashko and his collaborators
developed the method of a priori inequalities in negative
norms, which enabled the study of a broad class of
optimization problems for systems with distributed
parameters, including differential models of the
pseudoparabolic type (see also [4] and the references
therein). It was later established that this methodology is
also well suited for addressing Dirichlet problems
involving integro-differential equations with Volterra-
type integral terms [2], [5], [6].

We consider the linear pseudoparabolic differential
equation Lu = Lyu + Lou = f, where
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with initial-boundary Dirichlet conditions
Uli=0 = 0, Ulxean = 0. (3)

In [6], we stated a priori inequalities similar to those
in [1] and [2] for the case b; = K; = K = 0. The results
concerning the well-posedness of the initial-boundary
problems and the existence of optimal control was
justified in the cited work.

II. MAIN SPACES

The evolution of the system is described by the linear
equation Lu = f in the domain Q =0 X (0,T). We
assume some smoothness assumptions on the coefficients
and the kernels as in [6].

By Wgg, Hgg we denote the completion of the space
of smooth functions Cgy that satisfy the conditions (3)
with respect to the norms

n 2
Q i=1
1
n 2
Nt = (f N dQ) .
Q i=1

Similarly, we define Wgg+, Hgg+. Finally, by Wgp,
Hgp , Wggp+ , Hgp+ we denote the negative spaces
constructed from the corresponding positive spaces with
respect to L, (Q).

(5)

Paper [6] provides theorems on well-posedness and
existence on optimal control. In particular

Definition. A function u € Hgy is called a generalized
(weak) solution of the equation Lu = f, f € W+ if

(u'L*v)HBR = (f’ V)WBR+’

Jfor any functions v € W gp+ such that L*v € Hgp.
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Theorem 1. For any f € Wy,+ there exists a unique
solution u € Hgy of the equation Lu = f in the sense of
definition above, and there exists a constant C > 0 such
that | u llpgg,<C Il f IIW§R+-

III. CONTROL REGULARIZATION

We average the right-hand side F = f + Ah in
optimal control problem from [6] and consider the
regularized pointwise control problem:

Lus = fE + c/qsh, us € WBR' (6)
Je(h) = llue —u(m)|I?. (7

Here,

£, = [ 00 G =303 Oy, ®)
N
Ah(5,0) = Y el = 20 ) Pl X ). (9)
k=1
with appropriate convolutional kernels w, and a, =

1
1 35 -

It can be shown that, if the set of admissible controls
U is closed, convex, and bounded in the Hilbert space H,
then the optimal control problem (6)-(9) has solution,
which converges weakly to the solution of the initial
optimal control problem in the space H , whene — 0

Theorem 2. For the problem (6)-(9), the functional J.(h)
is Fréchet differentiable for h € U, and its Fréchet
derivative has the form:

Jn(Ah) = [ Tiey (RY) ¢,(x', 0)dQ" - Axy s +
xq,i+e/2

+2 Sy Tha [0 v €, 0dE - Ay, 0)dQ,
where

Rv=v (xl,i + g,x’, t) —v (xl,i —g,x’, t),
and v is the solution of the adjoint problem
L*v(h) = 2(w(h) — zp).

IV. NUMERICAL EXAMPLE
Let us consider 2 = [-1,1], K;; = 1,K;, =K =0,
a;(x) =1, b(x) = -1, by(x) =0, by, (x) =-1,T =
1.

Thus, the regularized problem under consideration is
of the form:

t
Up — Upgy — U+ Uy + f Uy (x, T)dT

= a.(x — 2 (D).

Here, x € 2 = [-1,1],t € [0,1], and (xq, @) is the
control that belongs to a bounded set of admissible
controls U from the control space H =[—1,1] X
L,(0,1). U is assumed to be sufficiently large. To find
the optimal control, we will use the gradient method:
hiy1 = h; — u; - gradJy,,. For the initial approximation,
we use x; = 0,¢(t) = 0. At each step of the gradient
method, the gradient of the quality functional grad/y, is
computed using the previously computed Fréchet

derivative. To compute this gradient, the forward and
adjoint problems must be solved

Lu(hy) = A.hy, Lv(R) = 2(h) — zo).

The solutions to the latest problems are obtained
using implicit finite-difference schemes.

TABLE I. TABLE OF VALUES OF THE CONTROL AND THE COST
FUNCTIONAL FOR DIFFERENT NUMBERS OF ITERATIONS.

Ite(:)l:ti x J Ite(:)l:ti x J
0 0 1.2157 5200 0.4728 | 0.0231
200 0.2613 | 0.5954 5400 0.4633 | 0.0217
400 0.3020 | 0.3962 5600 0.4692 | 0.0205
600 0.3324 | 0.2928 5800 0.4756 | 0.0193
800 0.3595 | 0.2296 6000 0.4687 | 0.0185
1000 0.3709 | 0.1869 6200 0.4751 | 0.0173
1200 0.3865 | 0.1562 6400 0.4711 | 0.0165
1400 0.3951 | 0.1331 6600 0.4794 | 0.0157
1500 0.4030 | 0.1234 6800 0.4727 | 0.0150
1600 0.4032 | 0.1149 7000 0.4716 | 0.0143
1800 0.4156 | 0.1004 7200 0.4815 | 0.0138
2000 0.4213 | 0.0886 7400 0.4746 | 0.0132
2200 0.4282 | 0.0788 7600 0.4744 | 0.0127
2400 0.4303 | 0.0705 7800 0.4847 | 0.0121
2600 0.4356 | 0.0635 8000 0.4792 | 0.0117
2800 0.4397 | 0.0576 8200 0.4787 | 0.0113
3000 0.4406 | 0.0522 8400 0.4841 0.0108
3200 0.4406 | 0.0477 8600 0.4895 | 0.0104
3400 0.4525 | 0.0438 8800 0.4833 | 0.0100
3600 0.4541 | 0.0402 9000 0.4845 | 0.0097
3800 0.4547 | 0.0371 9200 0.4883 | 0.0093
4000 0.4599 | 0.0344 9400 0.4892 | 0.0090
4200 0.4549 | 0.0320 9600 0.4855 | 0.0088
4400 0.4571 | 0.0299 9800 0.4906 | 0.0088
4600 0.4687 | 0.0278 10000 0.4836 | 0.0083
4800 0.4608 | 0.0260 10100 0.4863 | 0.0081
5000 0.4669 | 0.0244

In the graphs below, we will display the results of the
numerical approximation u(/#) and ¢@(f) after

n=400,1500,4000,10000 iterations and plots the
change of the cost functional J (/) as well as the graph

of the change in the control with respect to the control
variable X, .
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Figure 1: Desired state function Z . Figure 4: Numerical approximations u(h) after 4000 iterations.
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Figure 2: Numerical approximations u(h) after 400 iterations. Figure 5: Numerical approximations u(h) after 10000 iterations.
L V. CONCLUSIONS

In this paper, we examine the problem of determining
an optimal pointwise control for systems governed by
pseudoparabolic equations, integro-differential in nature.
The study is grounded in the method of a priori estimates

1o in negative norms. By establishing such inequalities

f-:f within an appropriate system of functional spaces, we

R claim the existence of an optimal control for both the

B o gl original and the regularized formulations. Unlike many
Vo R " related studies, our approach does not rely on the

I e nonnegative definiteness of the associated differential

operator, thereby expanding the scope of its applicability.

Figure 3: Numerical approximations U h after 1500 iterations. . , L. .
( ) The derived Fréchet derivative of the cost functional

for the regularized problem enables the use of gradient-
based numerical schemes to compute the optimal control.
A representative example demonstrates the effectiveness
of this method: by employing a regularized point control,
we achieve close agreement between the computed and
desired trajectories, as confirmed by the diminishing
value of the cost functional. Additional numerical results
and visualizations highlight the convergence behavior,
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Figure 6: The graph of the change in the costcriterion.
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Figure 7: The graph of the change in the control.

including a non-monotonic trend in one component of the
control, likely due to the gradient step size. Although

reducing the step could improve smoothness, it would
significantly increase computational effort.

It is important to note that the cost functional is
generally non-convex, and thus the resulting control may
represent either a local or a global minimum. This issue
deserves further exploration in specific contexts.
Nevertheless, in the presented example, convergence of
the cost functional to zero confirms the attainment of an
optimal control.

A natural continuation of this work involves the study
of controllability and asymptotic controllability problems
for the corresponding systems, which may further extend
the theoretical and practical implications of the proposed
framework.
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