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Abstract—We employ the method of a priori inequalities 
in negative norms to prove the existence of a pointwise 
optimal control for the regularized problem corresponding 
to a time-nonlocal pseudoparabolic integro-differential 
equation with a Volterra-type integral term. Certain 
differential properties of the cost functional are 
investigated, and a numerical example illustrating the 
computation of the optimal control is presented. 
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I. INTRODUCTION 

Within applied mathematics, considerable interest is 
directed toward pseudoparabolic differential and integro-
differential formulations. Equations of this character 
serve as analytical frameworks for a broad spectrum of 
physical phenomena, encompassing delayed radiation 
transport, two-phase flow in porous structures influenced 
by dynamic capillarity or hysteretic behavior, ionic 
diffusion within soils, and thermal propagation through 
heterogeneous composites (see, for instance, [1], [2], and 
sources cited therein). 

In [1], [3] S.I. Lyashko and his collaborators 
developed the method of a priori inequalities in negative 
norms, which enabled the study of a broad class of 
optimization problems for systems with distributed 
parameters, including differential models of the 
pseudoparabolic type (see also [4] and the references 
therein). It was later established that this methodology is 
also well suited for addressing Dirichlet problems 
involving integro-differential equations with Volterra-
type integral terms [2], [5], [6]. 

We consider the linear pseudoparabolic differential 
equation ℒ𝑢𝑢 ≡ ℒ1𝑢𝑢 + ℒ2𝑢𝑢 = 𝑓𝑓, where  

ℒ1𝑢𝑢 ≡ − � �𝑎𝑎𝑖𝑖𝑖𝑖(𝑥𝑥) 𝑢𝑢𝑥𝑥𝑗𝑗�𝑥𝑥𝑖𝑖𝑡𝑡

𝑛𝑛

𝑖𝑖,𝑗𝑗=1

+ 𝑎𝑎(𝑥𝑥)𝑢𝑢𝑡𝑡 −

− � �𝑏𝑏𝑖𝑖𝑖𝑖(𝑥𝑥) 𝑢𝑢𝑥𝑥𝑗𝑗�𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖,𝑗𝑗=1

+ �𝑏𝑏𝑖𝑖

𝑛𝑛

𝑖𝑖=1

(𝑥𝑥)𝑢𝑢𝑥𝑥𝑖𝑖 + 𝑏𝑏(𝑥𝑥)𝑢𝑢, (1)

and 

ℒ2𝑢𝑢 ≡ � ��𝐾𝐾𝑖𝑖𝑖𝑖(𝑥𝑥, 𝑡𝑡, 𝜏𝜏) 𝑢𝑢𝑥𝑥𝑖𝑖(𝑥𝑥, 𝜏𝜏)�
𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1

𝑡𝑡

0
+

�𝐾𝐾𝑖𝑖

𝑛𝑛

𝑖𝑖=1

(𝑥𝑥, 𝑡𝑡, 𝜏𝜏)𝑢𝑢𝑥𝑥𝑖𝑖 + 𝐾𝐾(𝑥𝑥, 𝑡𝑡, 𝜏𝜏)𝑢𝑢 𝑑𝑑𝑑𝑑, (2)

with initial-boundary Dirichlet conditions 

𝑢𝑢|𝑡𝑡=0 = 0,  𝑢𝑢|𝑥𝑥∈∂𝛺𝛺 = 0. (3) 

In [6], we stated a priori inequalities similar to those 
in [1] and [2] for the case 𝑏𝑏𝑖𝑖 = 𝐾𝐾𝑖𝑖 = 𝐾𝐾 = 0. The results 
concerning the well-posedness of the initial-boundary 
problems and the existence of optimal control was 
justified in the cited work. 

II. MAIN SPACES

The evolution of the system is described by the linear 
equation ℒ𝑢𝑢 = 𝑓𝑓  in the domain 𝑄𝑄 = 𝛺𝛺 × (0,𝑇𝑇).  We 
assume some smoothness assumptions on the coefficients 
and the kernels as in [6]. 

By 𝑊𝑊𝐵𝐵𝐵𝐵, 𝐻𝐻𝐵𝐵𝐵𝐵  we denote the completion of the space 
of smooth functions 𝐶𝐶𝐵𝐵𝐵𝐵∞  that satisfy the conditions (3) 
with respect to the norms 

∥ 𝑢𝑢 ∥𝑊𝑊𝐵𝐵𝐵𝐵= ��𝑢𝑢𝑡𝑡2
𝑄𝑄

+ �𝑢𝑢𝑥𝑥𝑖𝑖𝑡𝑡
2

𝑛𝑛

𝑖𝑖=1

𝑑𝑑𝑑𝑑�

1
2

, (4) 

∥ 𝑢𝑢 ∥𝐻𝐻𝐵𝐵𝐵𝐵= ��𝑢𝑢2
𝑄𝑄

+ �𝑢𝑢𝑥𝑥𝑖𝑖
2

𝑛𝑛

𝑖𝑖=1

𝑑𝑑𝑑𝑑�

1
2

. (5) 

Similarly, we define 𝑊𝑊𝐵𝐵𝑅𝑅+ , 𝐻𝐻𝐵𝐵𝑅𝑅+ . Finally, by 𝑊𝑊𝐵𝐵𝐵𝐵
− , 

𝐻𝐻𝐵𝐵𝐵𝐵− , 𝑊𝑊𝐵𝐵𝑅𝑅+
− , 𝐻𝐻𝐵𝐵𝑅𝑅+

−  we denote the negative spaces 
constructed from the corresponding positive spaces with 
respect to 𝐿𝐿2(𝑄𝑄). 

Paper [6] provides theorems on well-posedness and 
existence on optimal control. In particular 

Definition. A function 𝑢𝑢 ∈ 𝐻𝐻𝐵𝐵𝐵𝐵  is called a generalized 
(weak) solution of the equation ℒ𝑢𝑢 = 𝑓𝑓,  𝑓𝑓 ∈ 𝑊𝑊𝐵𝐵𝑅𝑅+

−  if 

⟨𝑢𝑢,ℒ∗𝑣𝑣⟩𝐻𝐻𝐵𝐵𝐵𝐵 = ⟨𝑓𝑓, 𝑣𝑣⟩𝑊𝑊𝐵𝐵𝑅𝑅+
,

for any functions 𝑣𝑣 ∈ 𝑊𝑊𝐵𝐵𝑅𝑅+  such that ℒ∗𝑣𝑣 ∈ 𝐻𝐻𝐵𝐵𝐵𝐵− . 
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Theorem 1. For any 𝑓𝑓 ∈ 𝑊𝑊𝐵𝐵𝑅𝑅+
−  there exists a unique 

solution 𝑢𝑢 ∈ 𝐻𝐻𝐵𝐵𝐵𝐵  of the equation ℒ𝑢𝑢 = 𝑓𝑓 in the sense of 
definition above, and there exists a constant 𝐶𝐶 > 0 such 
that ∥ 𝑢𝑢 ∥𝐻𝐻𝐵𝐵𝐵𝐵≤ 𝐶𝐶 ∥ 𝑓𝑓 ∥𝑊𝑊𝐵𝐵𝑅𝑅+

− .

III. CONTROL REGULARIZATION

We average the right-hand side 𝐹𝐹 = 𝑓𝑓 + 𝐴𝐴ℎ  in 
optimal control problem from [6] and consider the 
regularized pointwise control problem: 

ℒ𝑢𝑢ε = 𝑓𝑓ε + 𝒜𝒜εℎ,𝑢𝑢ε ∈ 𝑊𝑊BR, (6) 

𝐽𝐽ε(ℎ) = ||𝑢𝑢ε − 𝑢𝑢(ℎ)||2 . (7) 

Here, 

𝑓𝑓ε(𝑥𝑥, 𝑡𝑡) = �𝜔𝜔ε(𝑦𝑦)𝑓𝑓(𝑥𝑥1 − 𝑦𝑦, 𝑥𝑥2, . . , 𝑥𝑥n, 𝑡𝑡)𝑑𝑑𝑑𝑑, (8)

𝒜𝒜εℎ(𝑥𝑥, 𝑡𝑡) = �𝑎𝑎ε�𝑥𝑥1 − 𝑥𝑥1,k�𝜑𝜑k(𝑥𝑥2, . . , 𝑥𝑥n, 𝑡𝑡)
𝑠𝑠

𝑘𝑘=1

. (9)

with appropriate convolutional kernels 𝜔𝜔ε  and 𝑎𝑎ε =
1
ε

1[−ε2;ε2] . 

It can be shown that, if the set of admissible controls 
𝒰𝒰 is closed, convex, and bounded in the Hilbert space ℋ, 
then the optimal control problem (6)-(9) has solution, 
which converges weakly to the solution of the initial 
optimal control problem in the space ℋ , when 𝜀𝜀 → 0 

Theorem 2. For the problem (6)-(9), the functional 𝐽𝐽𝜀𝜀(ℎ) 
is Fréchet differentiable for ℎ ∈ 𝒰𝒰 , and its Fréchet 
derivative has the form: 

𝐽𝐽ℎ(𝛥𝛥ℎ) = 1
𝜀𝜀 ∫ ∑ (𝑅𝑅𝑅𝑅)𝑠𝑠

𝑖𝑖=1𝑄𝑄′ 𝜑𝜑𝑖𝑖(𝑥𝑥′, 𝑡𝑡)𝑑𝑑𝑄𝑄′ ⋅ 𝛥𝛥𝑥𝑥1,𝑖𝑖 + 

+ 1
𝜀𝜀 ∫ ∑ ∫ 𝑣𝑣𝑥𝑥1,𝑖𝑖+𝜀𝜀/2

𝑥𝑥1,𝑖𝑖−𝜀𝜀/2
𝑠𝑠
𝑖𝑖=1𝑄𝑄′ (𝜉𝜉, 𝑥𝑥′, 𝑡𝑡)𝑑𝑑𝑑𝑑 ⋅ 𝛥𝛥𝜑𝜑𝑖𝑖(𝑥𝑥′, 𝑡𝑡)𝑑𝑑𝑄𝑄′, 

where 

𝑅𝑅𝑅𝑅 = 𝑣𝑣 �𝑥𝑥1,𝑖𝑖 + 𝜀𝜀
2

, 𝑥𝑥′, 𝑡𝑡� − 𝑣𝑣 �𝑥𝑥1,𝑖𝑖 −
𝜀𝜀
2

, 𝑥𝑥′, 𝑡𝑡�,

and 𝑣𝑣 is the solution of the adjoint problem 

ℒ∗𝑣𝑣(ℎ) = 2(𝑢𝑢(ℎ) − 𝑧𝑧0). 

IV. NUMERICAL EXAMPLE

Let us consider 𝛺𝛺 = [−1,1], 𝐾𝐾11 = 1,𝐾𝐾1 = 𝐾𝐾 = 0, 
𝑎𝑎1(𝑥𝑥) = 1 , 𝑏𝑏(𝑥𝑥) = −1, 𝑏𝑏1(𝑥𝑥) = 0, 𝑏𝑏11(𝑥𝑥) = −1, 𝑇𝑇 =
1. 

Thus, the regularized problem under consideration is 
of the form: 

𝑢𝑢𝑡𝑡 − 𝑢𝑢𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑢𝑢 + 𝑢𝑢𝑥𝑥𝑥𝑥 + � 𝑢𝑢𝑥𝑥𝑥𝑥
𝑡𝑡

0
(𝑥𝑥, 𝜏𝜏)𝑑𝑑𝑑𝑑

= 𝑎𝑎𝜀𝜀(𝑥𝑥 − 𝑥𝑥1)𝜑𝜑(𝑡𝑡). 

Here, 𝑥𝑥 ∈ 𝛺𝛺 = [−1,1], 𝑡𝑡 ∈ [0,1] , and (𝑥𝑥1,𝜑𝜑)  is the 
control that belongs to a bounded set of admissible 
controls 𝒰𝒰  from the control space ℋ = [−1,1] ×
𝐿𝐿2(0,1). 𝒰𝒰 is assumed to be sufficiently large. To find 
the optimal control, we will use the gradient method: 
ℎ𝑖𝑖+1 = ℎ𝑖𝑖 − 𝜇𝜇𝑖𝑖 ⋅ grad𝐽𝐽ℎ𝑖𝑖 . For the initial approximation, 
we use 𝑥𝑥1 = 0,𝜑𝜑(𝑡𝑡) = 0. At each step of the gradient 
method, the gradient of the quality functional grad𝐽𝐽ℎ𝑖𝑖 is 
computed using the previously computed Fréchet 

derivative. To compute this gradient, the forward and 
adjoint problems must be solved 

ℒ𝑢𝑢(ℎ𝑖𝑖) = 𝒜𝒜𝜀𝜀ℎ𝑖𝑖, ℒ∗𝑣𝑣(ℎ) = 2(𝑢𝑢(ℎ) − 𝑧𝑧0). 

The solutions to the latest problems are obtained 
using implicit finite-difference schemes. 

TABLE I.  TABLE OF VALUES OF THE CONTROL AND THE COST 
FUNCTIONAL  FOR DIFFERENT NUMBERS OF ITERATIONS. 

Iterati
on 𝒙𝒙𝟏𝟏 𝑱𝑱 Iterati

on 𝒙𝒙𝟏𝟏 𝑱𝑱 

0 0 1.2157 5200 0.4728 0.0231 

200 0.2613 0.5954 5400 0.4633 0.0217 

400 0.3020 0.3962 5600 0.4692 0.0205 

600 0.3324 0.2928 5800 0.4756 0.0193 

800 0.3595 0.2296 6000 0.4687 0.0185 

1000 0.3709 0.1869 6200 0.4751 0.0173 

1200 0.3865 0.1562 6400 0.4711 0.0165 

1400 0.3951 0.1331 6600 0.4794 0.0157 

1500 0.4030 0.1234 6800 0.4727 0.0150 

1600 0.4032 0.1149 7000 0.4716 0.0143 

1800 0.4156 0.1004 7200 0.4815 0.0138 

2000 0.4213 0.0886 7400 0.4746 0.0132 

2200 0.4282 0.0788 7600 0.4744 0.0127 

2400 0.4303 0.0705 7800 0.4847 0.0121 

2600 0.4356 0.0635 8000 0.4792 0.0117 

2800 0.4397 0.0576 8200 0.4787 0.0113 

3000 0.4406 0.0522 8400 0.4841 0.0108 

3200 0.4406 0.0477 8600 0.4895 0.0104 

3400 0.4525 0.0438 8800 0.4833 0.0100 

3600 0.4541 0.0402 9000 0.4845 0.0097 

3800 0.4547 0.0371 9200 0.4883 0.0093 

4000 0.4599 0.0344 9400 0.4892 0.0090 

4200 0.4549 0.0320 9600 0.4855 0.0088 

4400 0.4571 0.0299 9800 0.4906 0.0088 

4600 0.4687 0.0278 10000 0.4836 0.0083 

4800 0.4608 0.0260 10100 0.4863 0.0081 

5000 0.4669 0.0244 

In the graphs below, we will display the results of the 
numerical approximation ( )u h  and ( )tϕ  after 

400,1500,4000,10000n =  iterations and plots the 
change of the cost functional ( )J h  as well as the graph 
of the change in the control with respect to the control 
variable 1x . 
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Figure 1: Desired state function 0z .

Figure 2: Numerical approximations ( )u h after 400 iterations. 

Figure 3: Numerical approximations ( )u h after 1500 iterations. 

Figure 4: Numerical approximations ( )u h after 4000 iterations. 

Figure 5: Numerical approximations ( )u h after 10000 iterations. 

V. CONCLUSIONS

In this paper, we examine the problem of determining 
an optimal pointwise control for systems governed by 
pseudoparabolic equations, integro-differential in nature. 
The study is grounded in the method of a priori estimates 
in negative norms. By establishing such inequalities 
within an appropriate system of functional spaces, we 
claim the existence of an optimal control for both the 
original and the regularized formulations. Unlike many 
related studies, our approach does not rely on the 
nonnegative definiteness of the associated differential 
operator, thereby expanding the scope of its applicability. 

The derived Fréchet derivative of the cost functional 
for the regularized problem enables the use of gradient-
based numerical schemes to compute the optimal control. 
A representative example demonstrates the effectiveness 
of this method: by employing a regularized point control, 
we achieve close agreement between the computed and 
desired trajectories, as confirmed by the diminishing 
value of the cost functional. Additional numerical results 
and visualizations highlight the convergence behavior, 



Modeling, control and information technologies – 2025 

Figure 6: The graph of the change in the costcriterion. 

Figure 7: The graph of the change in the control. 

including a non-monotonic trend in one component of the 
control, likely due to the gradient step size. Although 

reducing the step could improve smoothness, it would 
significantly increase computational effort. 

It is important to note that the cost functional is 
generally non-convex, and thus the resulting control may 
represent either a local or a global minimum. This issue 
deserves further exploration in specific contexts. 
Nevertheless, in the presented example, convergence of 
the cost functional to zero confirms the attainment of an 
optimal control. 

A natural continuation of this work involves the study 
of controllability and asymptotic controllability problems 
for the corresponding systems, which may further extend 
the theoretical and practical implications of the proposed 
framework. 
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