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Анотація — Розглянуто архітектури Physics-
Informed Neural Networks, Graph Neural Networks та 
Neural Ordinary Differential Equations, що поєднують 
аналітичні та нейромережеві методи для розв’язання 
складних задач математичної фізики. Проведено огляд 
спеціалізованих нейронних мереж для вирішення 
математичних задач під час моделювання. Зроблено 
висновок про формування нової парадигми 
кіберматематичного моделювання, заснованої на 
інтеграції математичних методів і методів мащинного 
навчання.  

Ключові слова — кіберматематичне 
моделювання, Physics-Informed Neural Networks, Graph 
Neural Networks, Neural ODE, напівпровідникова 
електроніка, штучний інтелект. 

I.  ВСТУП 
У сучасній науці та техніці математичне 

моделювання посідає центральне місце як 
універсальний інструмент дослідження складних 
систем і процесів. Зокрема, в галузях фізики, 
електроніки, матеріалознавства та суміжних 
дисциплін воно дає змогу отримувати кількісні 
оцінки, прогнозувати поведінку об’єктів та 
оптимізувати параметри технологічних процесів. 
Проте традиційні методи математичного 
моделювання, що ґрунтуються на чисельному 
розв’язанні диференціальних рівнянь або 
аналітичних підходах, часто стикаються з 
обмеженнями. Це стосується передусім задач, які 
характеризуються жорсткістю рівнянь, 
багатомасштабністю, наявністю граничних шарів та 
сильно нелінійними залежностями. У таких 
випадках зростає потреба у нових методологіях, 
здатних поєднати точність аналітичних підходів і 
гнучкість алгоритмів машинного навчання. 

У цьому контексті виникає поняття 
кіберматематичного моделювання, яке можна 
визначити як інтегративну парадигму, що поєднує 
класичні математичні методи із сучасними 
обчислювальними технологіями, зокрема з 
інструментами штучного інтелекту. В основі такого 
підходу лежить ідея злиття формальних моделей, що 
спираються на закони фізики та математики, із 
алгоритмами, які навчаються на даних та здатні 
апроксимувати функції високої складності. 
Особливе місце серед таких інструментів посідають 
спеціальні нейронні мережі, архітектурні 
властивості яких орієнтовані на роботу з 
диференціальними рівняннями, просторовими 

структурами та часовими рядами. До них належать, 
зокрема, Physics-Informed Neural Networks (PINN) 
[1], Graph Neural Networks (GNN) [2] та Neural 
Ordinary Differential Equations (NODE) [4], кожна з 
яких відкриває нові можливості для аналізу й 
прогнозування поведінки систем у тих випадках, де 
класичні підходи виявляються надто громіздкими 
або неефективними. 

Використання таких штучних нейронних 
мереж дозволяє інтегрувати в процес навчання 
апріорні знання про фізичну природу явищ, що 
забезпечує не лише підвищення точності, а й 
стабільність моделі у випадках, коли кількість 
доступних експериментальних даних є обмеженою. 
Наприклад, PINN-моделі успішно застосовуються 
для моделювання теплопровідності, переносу заряду 
в напівпровідникових структурах та інших задач, де 
звичайні чисельні методи вимагають надмірних 
обчислювальних ресурсів. GNN виявляються 
ефективними у випадках, коли топологія 
досліджуваної системи має вирішальне значення, як-
от у моделях взаємодії вузлів електронних схем або 
в задачах прогнозування властивостей кристалічних 
ґраток. NODE, у свою чергу, дозволяють описувати 
динаміку складних систем у неперервному часі, що 
відкриває нові перспективи для моделювання 
фізичних процесів на різних часових масштабах. 

Таким чином, інтеграція спеціальних 
нейронних мереж у практику кіберматематичного 
моделювання становить актуальний і перспективний 
напрям сучасних наукових досліджень. Вона сприяє 
не лише розширенню арсеналу методів для вивчення 
складних нелінійних систем, але й створює умови 
для побудови універсальних гібридних моделей, 
здатних поєднувати переваги аналітичних і 
обчислювальних підходів. Метою даної статті є 
аналіз властивостей спеціалізованих нейронних 
мереж та виявлення особливостей їх застосування у 
задачах кіберматематичного моделювання. 

 
II. ОГЛЯД ЛІТЕРАТУРИ 

Протягом останнього десятиліття відбулося 
стрімке зростання інтересу до застосування методів 
штучного інтелекту, зокрема нейронних мереж, у 
математичному моделюванні складних фізичних 
процесів. Однією з перших – стала поява так званих 
PINN [1], які вперше були систематизовано описані 
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в роботах Р. Раїссі та Дж. Карніадакіса (Raissi, 
Perdikaris, Karniadakis, 2019). Основна ідея PINN 
полягає у включенні фізичних законів, 
представлених у вигляді диференціальних рівнянь, 
безпосередньо у функцію втрат нейронної мережі. 
Схему архітектури PINN, де показано вхідні змінні, 
вихід 𝑢𝑢 , обчислення похідних через автоматичне 
диференціювання та внесок у функцію втрат 
показано на рис. 1. Це дає змогу моделі не лише 
навчатися на обмежених експериментальних даних, 
але й задовольняти фундаментальні співвідношення, 
що описують поведінку системи. Подібний підхід 
значно розширює можливості застосування 
нейронних мереж у випадках, де традиційні чисельні 
методи, наприклад метод скінченних елементів, є 
надто обчислювально затратними. Зокрема, PINN 
продемонстрували ефективність у задачах 
моделювання теплопровідності, динаміки рідин та 
розподілу заряду в напівпровідникових структурах. 

 
Рис. 1. Схема архітектури PINN 

 
Інший важливий напрям становлять GNN [2], 

які спочатку були розроблені для аналізу даних у 
вигляді графів (Scarselli et al., 2009; Bronstein et al., 
2017). Особливістю GNN є їхня здатність 
враховувати топологічні зв’язки між елементами 
системи, що робить їх надзвичайно перспективними 
для моделювання структурованих об’єктів у фізиці 
та матеріалознавстві. Наприклад, у задачах 
прогнозування електронних властивостей кристалів 
або вивчення взаємодій у складних електронних 
схемах графові нейронні мережі здатні відображати 
взаємозалежності між вузлами та ребрами, що не 
завжди можливо у класичних підходах. Низка 
сучасних робіт демонструє застосування GNN у 
моделюванні енергетичних станів атомних ґраток та 
для прискореного розрахунку матеріальних 
констант, що особливо важливо в контексті розвитку 
нових напівпровідникових технологій. 

Не менш перспективним напрямом є 
використання Neural ODE [4], концепція яких була 
запропонована у роботах Чена та співавторів (Chen 
et al., 2018). У цьому підході динаміка прихованих 
станів нейронної мережі описується безперервними 
диференціальними рівняннями, що дає змогу більш 
природно відображати часову еволюцію системи. 
Neural ODE продемонстрували значний потенціал у 
моделюванні динамічних процесів, таких як 
перенесення носіїв заряду, розповсюдження 

хвильових сигналів або нелінійні коливальні явища. 
Перевага цього підходу полягає у можливості 
інтеграції з класичними чисельними методами 
розв’язання ОДР, що формує підґрунтя для 
створення гібридних алгоритмів 
кіберматематичного моделювання. 

Слід також відзначити дослідження, 
спрямовані на інтеграцію вищезгаданих підходів у 
єдині архітектури. Зокрема, розробляються PINN-
моделі з використанням графових структур, які 
дозволяють моделювати багатовимірні задачі з 
урахуванням складної геометрії. Паралельно 
проводяться роботи щодо поєднання Neural ODE із 
глибинними рекурентними мережами, що відкриває 
нові можливості для моделювання складних 
динамічних систем у реальному часі. У сучасній 
літературі такі гібридні підходи часто розглядаються 
як ключ до побудови універсальних 
кіберматематичних моделей, які можуть поєднувати 
точність класичних методів і адаптивність 
нейронних мереж. 

Таким чином, аналіз літератури свідчить про 
формування нової наукової парадигми, у якій 
спеціальні нейронні мережі стають не лише 
допоміжним інструментом обробки даних, а й 
повноцінним елементом методології математичного 
моделювання. Їх застосування в задачах 
електроніки, фізики матеріалів і суміжних галузях 
відкриває перспективи для розв’язання раніше 
недосяжних проблем, пов’язаних із 
багатомасштабністю, нелінійністю та обмеженістю 
емпіричних даних. 

 
III. МЕТОДИ ТА ПІДХОДИ ЗАСТОСУВАННЯ 

СПЕЦІАЛЬНИХ НЕЙРОННИХ МЕРЕЖ 
Кіберматематичне моделювання складних 

фізичних систем, зокрема у сфері 
напівпровідникової електроніки, вимагає поєднання 
класичних методів розв’язання диференціальних 
рівнянь із сучасними інструментами штучного 
інтелекту. На відміну від традиційних чисельних 
методів, таких як метод скінченних різниць чи 
скінченних елементів [5, 6], спеціальні нейронні 
мережі здатні інтегрувати апріорні знання про 
закони фізики безпосередньо у процес навчання, що 
відкриває нові перспективи у створенні 
універсальних гібридних моделей. 

Одним із найбільш розроблених напрямів є 
PINN [1]. За рахунок того, що рівняння, які 
складають основу моделі, включені у функцію втрат 
нейронної мережі вдається  задовольняти рівняння у 
часткових похідних не лише для значень навчальних 
даних, а й у всій області визначення задачі. 
Наприклад, у задачі моделювання розподілу 
електричного потенціалу в p-n переході можна 
задати рівняння Пуассона як обмеження у функції 
втрат, що суттєво зменшує кількість необхідних 
експериментальних даних [7]. У порівнянні з 
класичними чисельними алгоритмами, PINN 
демонструють кращу масштабованість для 
високовимірних задач і дають змогу отримувати 
рішення там, де пряме застосування методу 
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скінченних елементів вимагає надмірних 
обчислювальних ресурсів. 

Інший перспективний підхід пов'язаний з 
використанням Graph Neural Networks (GNN) [2, 3]. 
На відміну від класичних багатошарових 
перцептронів, ці мережі враховують топологічну 
структуру даних, що робить їх надзвичайно 
ефективними для моделювання фізичних систем, де 
взаємодія між елементами має вирішальне значення. 
У випадку електронних схем чи кристалічних ґраток 
вузли графа відповідають атомам чи електронним 
елементам, а ребра — зв’язкам або взаємодіям між 
ними. Схему архітектури GNN зображено на рис. 2. 
Застосування GNN у матеріалознавстві дозволило 
значно прискорити прогнозування енергетичних 
рівнів кристалів, що підтверджується сучасними 
дослідженнями у галузі «geometric deep learning» [3]. 

 
Рис 2. Схема архітектури Graph Neural Networks 

(GNN) 
 
Третім важливим напрямом є Neural Ordinary 

Differential Equations (Neural ODE) [4]. У цьому 
підході приховані стани нейронної мережі 
розвиваються відповідно до системи 
диференціальних рівнянь, інтегрованих чисельно. 
На відміну від рекурентних мереж, де дискретний 
крок часу задається жорстко, Neural ODE 
забезпечують безперервну часову динаміку. Це 
робить їх придатними для моделювання процесів, 
що описуються нелінійними динамічними 
рівняннями, зокрема переносу носіїв заряду чи 
хвильових процесів у напівпровідникових 
структурах [9]. У комбінації з PINN такі моделі 
формують основу для побудови гібридних 
архітектур, що поєднують точність аналітичних 
підходів із гнучкістю глибинного навчання. 

У сучасній літературі також активно 
досліджуються комбіновані методи. Наприклад, 
поєднання PINN та GNN дозволяє ефективно 
моделювати багатовимірні задачі з урахуванням 
складної геометрії, а інтеграція Neural ODE з 
рекурентними мережами відкриває нові перспективи 
для прогнозування процесів у реальному часі [1, 4]. 
Важливим напрямом розвитку вважається й 
оптимізація архітектур, оскільки висока 
обчислювальна складність і чутливість до вибору 
гіперпараметрів залишаються ключовими 
викликами [8]. 

Таким чином, методи PINN, GNN та Neural 
ODE формують три головні підходи у застосуванні 
спеціальних нейронних мереж для 

кіберматематичного моделювання. Кожен з них має 
власні переваги та обмеження: PINN забезпечують 
фізично узгоджені розв’язки, GNN ефективні у 
випадках складної топології, а Neural ODE 
відтворюють часову динаміку систем. Їх синергія 
створює підґрунтя для розвитку нової наукової 
парадигми, у межах якої класичні математичні 
моделі й алгоритми глибинного навчання 
виступають не конкурентами, а 
взаємодоповнюючими інструментами. 

 
IV. ПРИКЛАДИ ЗАСТОСУВАННЯ 

Застосування спеціальних нейронних мереж у 
кіберматематичному моделюванні знаходить 
підтвердження у низці практичних досліджень, які 
демонструють ефективність цих методів у задачах, 
де класичні підходи стикаються з суттєвими 
обмеженнями. Найбільш поширеним напрямом є 
використання PINN у задачах розв’язання рівнянь у 
часткових похідних, що описують фізичні процеси. 
Наприклад, у роботах Raissi та співавторів [1] PINN 
успішно застосовано для моделювання 
теплопровідності та хвильових рівнянь, що 
дозволило зменшити потребу у чисельних сітках 
високої розмірності. 

Подальші дослідження, такі як робота Cao та 
ін. (A Physics-Informed Neural Networks Algorithm for 
Simulating Semiconductor Devices, 2023), показали 
можливість інтеграції рівнянь Пуассона та 
неперервності безпосередньо у функцію втрат 
нейронної мережі. Це забезпечило отримання 
фізично узгоджених розв’язків при моделюванні p–
i–n структур навіть за відсутності повних 
експериментальних даних. Liu та співавт. (2024) 
розвинули цей підхід, запропонувавши Asymptotic-
Preserving Neural Networks, здатні враховувати 
асимптотичні переходи між різними фізичними 
режимами — від балансового до дифузійного, — що 
є важливим для точного опису електронного 
транспорту у напівпровідникових приладах. Подібні 
методи успішно використовуються для аналізу 
теплових процесів у мікроелектроніці [5, 7], а також 
для задач багатомасштабного моделювання рівняння 
Больцмана [Liu et al., Journal of Computational 
Physics, 2024]. 

Іншим напрямом практичного застосування є 
Graph Neural Networks (GNN), які продемонстрували 
високу ефективність у задачах, пов’язаних з 
аналізом складних структурованих систем. У 
матеріалознавстві GNN використовуються для 
прогнозування електронних властивостей 
кристалічних ґраток та вивчення енергетичних 
станів атомних структур [2, 3]. Наприклад, Hestroffer 
та співавт. (Graph Neural Networks for Efficient 
Learning of Mechanical Properties of Polycrystalline 
Materials, 2022) продемонстрували, що GNN можуть 
точно передбачати механічні властивості 
полі­кристалічних матеріалів, моделюючи вплив 
мікроструктури на макроскопічну поведінку. Gong 
та Ruff (2023) у своїх роботах показали можливість 
використання GNN для виявлення закономірностей 
у періодичних структурах матеріалів і передбачення 
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параметрів, таких як енергія формування, 
електронна спорідненість та стабільність 
кристалічної решітки. 

 
У сучасних дослідженнях з розробки нових 

напівпровідникових матеріалів GNN допомагають 
передбачати дефекти кристалічної структури та 
їхній вплив на електронну провідність, що значно 
скорочує витрати на експериментальні 
випробування. У галузі електронних схем подібні 
мережі застосовуються для аналізу топологій 
складних мережевих структур, оптимізації 
трасування сигналів і виявлення аномалій у схемах, 
де традиційні методи графової оптимізації 
виявляються неефективними. 

Третім важливим прикладом є використання 
Neural ODE у задачах моделювання часової 
динаміки процесів. У фізиці та електроніці ці моделі 
застосовуються для опису коливальних процесів, 
нелінійних хвильових явищ і транспорту заряду у 
мікроелектронних структурах [4, 9]. Завдяки 
можливості опису безперервної часової динаміки, 
Neural ODE забезпечують більш природне 
моделювання фізичних процесів, уникаючи 
помилок, пов’язаних із дискретизацією часу. 
Дослідження Chen та співавт. (Neural ODE, 2018) 
започаткувало нову парадигму, яка поєднує 
глибинне навчання з теорією диференціальних 
рівнянь. Сьогодні цей підхід часто комбінують із 
PINN для побудови гібридних моделей, здатних 
враховувати як часову, так і просторову динаміку 
систем. 

Варто підкреслити, що застосування 
спеціальних нейронних мереж не обмежується лише 
фізикою чи електронікою. У літературі описано 
приклади використання PINN для прогнозування 
біомедичних процесів, зокрема моделювання 
кровотоку у судинних системах, а GNN — для 
аналізу молекулярних взаємодій у хімії та 
фармацевтиці [1, 3]. Це підтверджує універсальність 
таких методів і їх потенціал у створенні 
міждисциплінарних кіберматематичних моделей. 

V. ВИСНОВКИ 
Проведений аналіз показав, що сучасні 

підходи, зокрема PINN, GNN та Neural ODE, суттєво 
розширюють можливості традиційних методів 
математичного моделювання у фізиці та електроніці. 
Їх ключовою перевагою є здатність інтегрувати 
фізичні закони у процес навчання, відтворювати 
складні топологічні залежності та забезпечувати 
опис часової динаміки систем у безперервному 
просторі. 

Порівняння із класичними методами, такими 
як метод скінченних елементів чи підходи теорії 
збурень [5-7], продемонструвало, що спеціальні 
нейронні мережі дозволяють зменшити 
обчислювальну складність у багатовимірних 

задачах, забезпечують вищу стійкість до обмежених 
даних і створюють умови для отримання фізично 
узгоджених результатів навіть у випадках 
недостатності емпіричної інформації. Приклади 
застосування [1-4, 9] підтверджують їх ефективність 
у моделюванні розподілу носіїв заряду, 
прогнозуванні електронних властивостей матеріалів, 
аналізі коливальних процесів і складних 
структурних систем. 

Разом із тим, слід відзначити наявність певних 
обмежень, серед яких — висока обчислювальна 
вартість навчання, чутливість до вибору архітектури 
та гіперпараметрів, а також складність інтерпретації 
результатів [8]. Ці фактори визначають необхідність 
подальших досліджень, спрямованих на оптимізацію 
нейромережевих архітектур, розробку ефективних 
алгоритмів регуляризації та створення гібридних 
методологій, які поєднують класичні аналітичні 
моделі з алгоритмами глибинного навчання. 

Таким чином, застосування спеціальних 
нейронних мереж у кіберматематичному 
моделюванні можна розглядати як формування нової 
наукової парадигми, у межах якої класичні та 
інтелектуальні методи виступають 
взаємодоповнюючими складовими єдиної 
інтегрованої системи. Подальший розвиток цього 
напряму матиме суттєве значення для розв’язання 
задач у напівпровідниковій електроніці, 
матеріалознавстві та інших високотехнологічних 
галузях, де критично важливим є поєднання 
точності, адаптивності та ефективності. 
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