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Анотація - Сформовано математичну модель 

неізотермічної фільтраційної консолідації 
неоднорідного масиву ґрунту з урахуванням зміни 
розмірів області в процесі ущільнення. Неоднорідність 
в роботі розглянуто з точки зору наявності тонких 
включень (геобар’єрів), фізико-механічні 
характеристики яких відрізняються від аналогічних 
характеристик основного ґрунту. Геобар’єри, які 
піддаються впливу неізотермічних умов, є складовою 
частиною сховищ відходів. Зміна їх (геобар’єрів) 
гідромеханічних та термічних властивостей, так само 
як і явища термічного осмосу, вимагає модифікації як 
рівнянь в математичній моделі, так і умов спряження. 
З математичної точки зору сформована математична 
модель описується однофазною задачею Стефана і 
своєю складовою містить кінематичну граничну умову 
на верхній рухомій межі. Зміна розмірів області 
дослідження в задачі фізично обумовлюється зміною 
об’єму пор пористого середовища в процесі 
розсіювання надлишкових напорів. Якщо проникність 
геобар’єра є нелінійно залежною від температурного 
фактору, то це впливає на динаміку консолідаційних 
процесів і, відповідно, - на значення просідань. 
Запропоновано схеми скінченноелементних розв’язків 
початково-крайової задачі для системи нелінійних 
параболічних рівнянь в неоднорідній області з 
інтегральною умовою спряження. 

Ключові слова - неізотермічна консолідація, 
просідання, умова спряження, кінематична гранична 
умова, метод скінченних елементів 

 
I. ВСТУП 

Звалища відходів стали невід’ємними 
елементами життєдіяльності людей на планеті Земля 
[1]. Одним із інженерних елементів сховищ відходів 
є геобар’єри [2]. В результаті біодеградаційних 
процесів в сховищах відходів відбувається виділення 
теплової енергії [3, 4]. Тому постає необхідність 
урахування неізотермічних впливів як на 
консолідацію пористого середовища тіла сховища 

відходів, так і на фільтраційні характеристики 
геобар’єрів.  

Одне з основних питань впливу сховищ відходів 
на навколишнє середовище – це поширення 
шкідливих речовин шляхом їх фільтрації через 
геобар’єри в навколишнє середовище. Тому 
фактори, які впливають на параметри фільтрації 
через геобар’єри мають бути прийняті до уваги в 
прогнозних математичних моделях. З математичної 
точки зору існуючий факт теплового впливу вимагає 
модифікації умов спряження на тонких геобар’єрах з 
урахуванням неізотермічних та взаємопов’язаних 
нелінійних ефектів. Такі модифікації наведені 
наприклад в роботах [5-11]. 

 

II. ПОСТАНОВКА ЗАДАЧІ У ФІЗИЧНІЙ 
ОБЛАСТІ 

Розглянемо масив пористого середовища 
загальною товщиною 𝑙𝑙 = 𝑙𝑙(𝑡𝑡),  який складається із 
двох підобластей Ω1  та Ω2 . Причому Ω1 ∩ Ω2 = ∅. 
Область Ω = Ω1 ∪ Ω2  вважаємо неоднорідною. Під 
неоднорідністю будемо розуміти наявність межі 
контакту 𝜔𝜔 = Ω1���� ∩ Ω2����, яка, з фізичної точки зору, є 
тонким включенням товщиною 𝑑𝑑  третього 
матеріалу. З математичної точки зору товщиною 
самого включення нехтують і сама величина 𝑑𝑑 
фігурує лише в так званих умовах спряження 
неідеального контакту для невідомих функцій.  

Дослідимо процес консолідації даного повністю 
насиченого пористого середовища в області Ω =
Ω1 ∪ Ω2  в умовах впливу температурного фактору. 
Це означає, що неоднорідний шар ґрунту – це основа 
сховища відходів, а тонке включення – це геобар’єр. 
Консолідація ґрунту є наслідком прикладання 
зовнішнього навантаження у вигляді твердих 
відходів у сховищі. В результаті хімічних реакцій у 
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сховищі відбувається виділення теплової енергії. 
Отже, невідомими будуть функції напорів ℎ(𝑥𝑥, 𝑡𝑡) та 
температури 𝑇𝑇(𝑥𝑥, 𝑡𝑡),𝑥𝑥 ∈ Ω = Ω1 ∪ Ω2, 𝑡𝑡 ≥ 0.  

 

III. МАТЕМАТИЧНА МОДЕЛЬ ЗАДАЧІ В 
ОБЛАСТІ З ТОНКИМ ВКЛЮЧЕННЯМ 

Взаємозв’язаний процес зміни напорів та 
температури повністю насиченого неоднорідного 
масиву пористого середовища в одновимірному 
випадку описується наступною крайовою задачею: 

𝜕𝜕ℎ
𝜕𝜕𝜕𝜕

=
1 + 𝑒𝑒
𝛾𝛾𝛾𝛾

𝜕𝜕
𝜕𝜕𝜕𝜕

�𝑘𝑘(ℎ,𝑇𝑇)
𝜕𝜕ℎ
𝜕𝜕𝜕𝜕

+ 𝜇𝜇(ℎ)
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�, 

  𝑥𝑥 ∈ 𝛺𝛺1 ∪ 𝛺𝛺2, 𝑡𝑡 > 0, (1) 

ℎ(𝑥𝑥, 𝑡𝑡)|𝑥𝑥=0 = ℎ0(𝑡𝑡), 𝑡𝑡 ≥ 0;          (2) 

𝑢𝑢(𝑥𝑥, 𝑡𝑡)|𝑥𝑥=𝑙𝑙 = �−𝑘𝑘(ℎ,𝑇𝑇)
𝜕𝜕ℎ
𝜕𝜕𝜕𝜕

− 𝜇𝜇(ℎ)
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
��
𝑥𝑥=𝑙𝑙(𝑡𝑡)

= 0,  

𝑡𝑡 ≥ 0; (3) 

ℎ(𝑥𝑥, 0) = ℎ0(𝑥𝑥), 𝑥𝑥 ∈ 𝛺𝛺1 ∪ 𝛺𝛺2;     (4) 

𝑐𝑐𝑠𝑠(ℎ)
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
𝜕𝜕
𝜕𝜕𝜕𝜕

�𝜆𝜆(ℎ)
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� − 𝜌𝜌𝑤𝑤𝑐𝑐𝑤𝑤𝑢𝑢(ℎ,𝑇𝑇)

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

, 

  𝑥𝑥 ∈ 𝛺𝛺1 ∪ 𝛺𝛺2, 𝑡𝑡 > 0;          (5) 

𝑇𝑇(𝑥𝑥, 𝑡𝑡)|𝑥𝑥=0 = 𝑇𝑇0(𝑡𝑡), 𝑡𝑡 ≥ 0; (6) 

𝑞𝑞𝑇𝑇(𝑥𝑥, 𝑡𝑡)|𝑥𝑥=𝑙𝑙 = −𝜆𝜆(ℎ) 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑥𝑥=𝑙𝑙(𝑡𝑡)

= 0, 𝑡𝑡 ≥ 0; (7) 

𝑇𝑇(𝑥𝑥, 0) = 𝑇𝑇0(𝑥𝑥), 𝑥𝑥 ∈ 𝛺𝛺1 ∪ 𝛺𝛺2;      (8) 

𝑢𝑢±|𝑥𝑥=𝜉𝜉 = −
[ℎ]

∫ 𝑑𝑑𝑑𝑑
𝑘𝑘𝜔𝜔(ℎ,𝑇𝑇)

𝑑𝑑
0

−
[𝑇𝑇]

∫ 𝑑𝑑𝑑𝑑
𝜇𝜇𝜔𝜔(ℎ)

𝑑𝑑
0

;  (9) 

𝑞𝑞𝑇𝑇
±�

𝑥𝑥=𝜉𝜉
= −

[𝑇𝑇]

∫ 𝑑𝑑𝑑𝑑
𝜆𝜆𝜔𝜔(ℎ)

𝑑𝑑
0

;                (10) 

𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= −�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝑑𝑑𝑑𝑑

𝑙𝑙(𝑡𝑡)

0

;                  (11) 

𝑙𝑙(𝑡𝑡)|𝑡𝑡=0 = 𝑙𝑙0 > 0.                   (12) 

 

Тут: Ω1 = (0; 𝜉𝜉), Ω2 = (𝜉𝜉; 𝑙𝑙), 0 < 𝜉𝜉 < 𝑙𝑙(𝑡𝑡); ℎ0(𝑡𝑡), 
ℎ0(𝑥𝑥), 𝑇𝑇0(𝑡𝑡), 𝑇𝑇0(𝑥𝑥), - відомі функції; 𝑎𝑎 - коефіцієнт 
стискуваності ґрунту; ℎ - напір; 𝑘𝑘, 𝑘𝑘𝜔𝜔 - коефіцієнти 
фільтрації основного ґрунту та ґрунту включення 
відповідно; 𝜆𝜆, 𝜆𝜆𝜔𝜔  - коефіцієнти теплопровідності 
основного ґрунту та ґрунту включення відповідно; 𝜇𝜇,
𝜇𝜇𝜔𝜔  - коефіцієнти термічного осмосу основного 
ґрунту та ґрунту включення відповідно; 𝑢𝑢  - 
швидкість фільтрації; 𝑒𝑒  – коефіцієнт пористості 
грунту, причому 𝑒𝑒 = 𝜎𝜎

1−𝜎𝜎
, де 𝜎𝜎  - пористість ґрунту; 

𝑞𝑞𝑇𝑇  - потік теплової енергії; 𝑢𝑢±, 𝑞𝑞𝑇𝑇
±  – значення 

швидкостей фільтрації та потоків при 𝑥𝑥 = 𝜉𝜉 − 0 та 
𝑥𝑥 = 𝜉𝜉 + 0 відповідно; [ℎ] = ℎ+ − ℎ− , [𝑇𝑇] = 𝑇𝑇+ − 𝑇𝑇− 

- стрибки напорів та температури на тонкому 
включенні; 𝑐𝑐𝑠𝑠 = 𝜌𝜌𝑤𝑤𝑐𝑐𝑤𝑤𝜎𝜎 + 𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(1 − 𝜎𝜎)  – 
коефіцієнт об’ємної теплоємності ґрунту; 𝜌𝜌𝑤𝑤 , 𝜌𝜌𝑠𝑠𝑜𝑜𝑙𝑙𝑙𝑙𝑙𝑙 
– густини порової рідини та твердих частинок 
ґрунту; 𝑐𝑐𝑤𝑤 , 𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  – питомі теплоємності порової 
рідини та твердих частинок ґрунту. 

Рівняння (1) є рівнянням фільтраційної 
консолідації в умовах впливу температури та 
наявності термоосмотичних ефектів [12, 13]. Умови 
спряження (9), (10) відрізняються від класичних і 
враховують залежності коефіцієнта фільтрації 
геобар’єра від пористості та температури, наявність 
термічного осмосу, а також залежності коефіцієнта 
теплопровідності від пористості. 

Аналогічно [6], нехай 𝐻𝐻0 – простір функцій 𝑠𝑠(𝑥𝑥) 
які на кожній з областей Ω𝑖𝑖  належать простору 
Соболєва 𝑊𝑊2

1(Ω𝑖𝑖), 𝑖𝑖 = 1,2, причому задовольняють 
умову  

𝑠𝑠(𝑥𝑥)|𝑥𝑥=0 = 0. 
Нехай ℎ(𝑥𝑥, 𝑡𝑡) , 𝑇𝑇(𝑥𝑥, 𝑡𝑡)  – класичний розв’язок 

початково-крайової задачі (1)-(12). Візьмемо 𝑠𝑠(𝑥𝑥) ∈
𝐻𝐻0. Домножимо рівняння (1) та початкову умову (4) 
на 𝑠𝑠(𝑥𝑥) . Аналогічно - рівняння (5) та початкову 
умову (8). Інтегруючи їх на відрізку [0; 𝑙𝑙]  та 
враховуючи умови спряження (9), (10), отримаємо 

�
𝛾𝛾𝛾𝛾

1 + 𝑒𝑒
𝜕𝜕ℎ
𝜕𝜕𝜕𝜕

𝑙𝑙

0

𝑠𝑠(𝑥𝑥)𝑑𝑑𝑑𝑑 + �𝑘𝑘(ℎ,𝑇𝑇)
𝜕𝜕ℎ
𝜕𝜕𝜕𝜕

𝑙𝑙

0

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑

+ �𝜇𝜇(ℎ)
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝑙𝑙

0

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑 +
[ℎ][𝑠𝑠]

∫ 𝑑𝑑𝑑𝑑
𝑘𝑘𝜔𝜔(ℎ,𝑇𝑇)

𝑑𝑑
0

 

+
[𝑇𝑇][𝑠𝑠]

∫ 𝑑𝑑𝑑𝑑
𝜇𝜇𝜔𝜔(ℎ)

𝑑𝑑
0

= 0,   (13) 

�ℎ(𝑥𝑥, 0)𝑠𝑠(𝑥𝑥)𝑑𝑑𝑑𝑑
𝑙𝑙

0

= �ℎ0(𝑥𝑥)𝑠𝑠(𝑥𝑥)𝑑𝑑𝑑𝑑
𝑙𝑙

0

,      (14) 

�𝑐𝑐𝑠𝑠
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝑙𝑙

0

𝑠𝑠(𝑥𝑥)𝑑𝑑𝑑𝑑 + �𝜆𝜆(ℎ)
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝑙𝑙

0

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑

+ �𝜌𝜌𝑤𝑤𝑐𝑐𝑤𝑤𝑢𝑢
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝑙𝑙

0

𝑠𝑠(𝑥𝑥)𝑑𝑑𝑑𝑑 +
[𝑇𝑇][𝑠𝑠]

∫ 𝑑𝑑𝑑𝑑
𝜆𝜆𝜔𝜔(ℎ)

𝑑𝑑
0

 

= 0,       (15) 

�ℎ(𝑥𝑥, 0)𝑠𝑠(𝑥𝑥)𝑑𝑑𝑑𝑑
𝑙𝑙

0

= �ℎ0(𝑥𝑥)𝑠𝑠(𝑥𝑥)𝑑𝑑𝑑𝑑
𝑙𝑙

0

.     (16) 

Отже, якщо ℎ(𝑥𝑥, 𝑡𝑡) , 𝑇𝑇(𝑥𝑥, 𝑡𝑡)  є класичним 
розв’язком початково-крайової задачі (1)-(12), то 
ℎ(𝑥𝑥, 𝑡𝑡), 𝑇𝑇(𝑥𝑥, 𝑡𝑡) – розв’язок задачі (13)-(16) в слабкій 
постановці. 

Нехай 𝐻𝐻 – простір функцій 𝑣𝑣(𝑥𝑥, 𝑡𝑡) які інтегровані 
з квадратом разом зі своїми першими похідними 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
, 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 на кожному з інтервалів (0; 𝜉𝜉), (𝜉𝜉; 𝑙𝑙), ∀𝑡𝑡 ∈ (0;𝒯𝒯], 
𝒯𝒯 > 0 , причому вони задовольняють однорідні 
граничні умови першого роду 

𝑣𝑣(𝑥𝑥, 𝑡𝑡)|𝑥𝑥=0 = 0, 𝑡𝑡 ≥ 0. 
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Означення 1. Функції ℎ(𝑥𝑥, 𝑡𝑡) ∈ 𝐻𝐻 , 𝑇𝑇(𝑥𝑥, 𝑡𝑡) ∈ 𝐻𝐻 , 
котрі для будь-якої 𝑠𝑠(𝑥𝑥) ∈ 𝐻𝐻0  задовольняють 
інтегральним співвідношенням (13)-(16) 
називаються узагальненим розв’язком початково-
крайової задачі (1)–(12). 

 

VI. НАБЛИЖЕНИЙ УЗАГАЛЬНЕНИЙ 
РОЗВ’ЯЗОК: ЙОГО ІСНУВАННЯ ТА ЄДИНІСТЬ 

Наближений узагальнений розв’язок початково-
крайової задачі (1)-(12) будемо шукати у вигляді 

ℎ�(𝑥𝑥, 𝑡𝑡) = �ℎ𝑖𝑖(𝑡𝑡)𝜑𝜑𝑖𝑖(𝑥𝑥)
𝑁𝑁

𝑖𝑖=1

, 

  𝑇𝑇�(𝑥𝑥, 𝑡𝑡) = �𝑇𝑇𝑖𝑖(𝑡𝑡)𝜑𝜑𝑖𝑖(𝑥𝑥)
𝑁𝑁

𝑖𝑖=1

,           (17) 

де {𝜑𝜑𝑖𝑖(𝑥𝑥)}𝑖𝑖=1𝑁𝑁  - базис скінченновимірного 
підпростору 𝑀𝑀0 ⊂ 𝐻𝐻0 ; ℎ𝑖𝑖(𝑡𝑡) , 𝑇𝑇𝑖𝑖(𝑡𝑡),  𝑖𝑖 = 1,𝑁𝑁  - 
невідомі коефіцієнти, які залежать лише від часу.  

Сукупність функцій, які можна подати у вигляді 
(17), породжують скінченновимірний підпростір 
𝑀𝑀 ⊂ 𝐻𝐻. 

Означення 2. Наближеним узагальненим 
розв’язком початково-крайової задачі (1)-(12) 
називається пара функцій ℎ̑(𝑥𝑥, 𝑡𝑡) ∈ 𝑀𝑀 , 𝑇̑𝑇(𝑥𝑥, 𝑡𝑡) ∈ 𝑀𝑀  
які для довільної функції 𝑆𝑆(𝑥𝑥) ∈ 𝑀𝑀0 задовольняють 
інтегральним співвідношенням 

�
𝛾𝛾𝛾𝛾

1 + 𝑒𝑒
𝜕𝜕ℎ�
𝜕𝜕𝜕𝜕

𝑙𝑙

0

𝑆𝑆(𝑥𝑥)𝑑𝑑𝑑𝑑 + �𝑘𝑘�ℎ� ,𝑇𝑇��
𝜕𝜕ℎ�
𝜕𝜕𝜕𝜕

𝑙𝑙

0

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑑𝑑𝑥𝑥

+ �𝜇𝜇�ℎ��
𝜕𝜕𝑇𝑇�
𝜕𝜕𝜕𝜕

𝑙𝑙

0

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑 +
�ℎ��[𝑆𝑆]

∫ 𝑑𝑑𝑑𝑑
𝑘𝑘𝜔𝜔�ℎ�,𝑇𝑇��

𝑑𝑑
0

 

+
�𝑇𝑇��[𝑆𝑆]

∫ 𝑑𝑑𝑑𝑑
𝜇𝜇𝜔𝜔�ℎ��

𝑑𝑑
0

= 0,   (18) 

�ℎ�(𝑥𝑥, 0)𝑆𝑆(𝑥𝑥)𝑑𝑑𝑑𝑑
𝑙𝑙

0

= �ℎ0(𝑥𝑥)𝑆𝑆(𝑥𝑥)𝑑𝑑𝑑𝑑
𝑙𝑙

0

,    (19) 

�𝑐𝑐𝑠𝑠
𝜕𝜕𝑇𝑇�
𝜕𝜕𝜕𝜕

𝑙𝑙

0

𝑆𝑆(𝑥𝑥)𝑑𝑑𝑑𝑑 + �𝜆𝜆�ℎ��
𝜕𝜕𝑇𝑇�
𝜕𝜕𝜕𝜕

𝑙𝑙

0

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑

+ �𝜌𝜌𝑤𝑤𝑐𝑐𝑤𝑤𝑢𝑢
𝜕𝜕𝑇𝑇�
𝜕𝜕𝜕𝜕

𝑙𝑙

0

𝑆𝑆(𝑥𝑥)𝑑𝑑𝑑𝑑 +
�𝑇𝑇��[𝑆𝑆]

∫ 𝑑𝑑𝑑𝑑
𝜆𝜆𝜔𝜔�ℎ��

𝑑𝑑
0

 

= 0,    (20) 

�𝑇𝑇�(𝑥𝑥, 0)𝑆𝑆(𝑥𝑥)𝑑𝑑𝑑𝑑
𝑙𝑙

0

= �𝑇𝑇0(𝑥𝑥)𝑆𝑆(𝑥𝑥)𝑑𝑑𝑑𝑑
𝑙𝑙

0

.      (21) 

 
Далі із слабкого формулювання (18)–(21) задачі 

(1)–(12), враховуючи (17) (покладаючи функцію 
𝑆𝑆(𝑥𝑥)  рівною кожній базисній функції 𝜑𝜑𝑖𝑖(𝑥𝑥) , 𝑖𝑖 =

1,𝑁𝑁 ), отримаємо задачу Коші для системи 
нелінійних диференціальних рівнянь 

𝐌𝐌𝟏𝟏(𝐇𝐇)
𝑑𝑑𝐇𝐇
𝑑𝑑𝑑𝑑

+ 𝐋𝐋𝟏𝟏(𝐇𝐇,𝐓𝐓)𝐇𝐇(𝒕𝒕) + 𝐋𝐋𝟏𝟏𝟏𝟏(𝐇𝐇)𝐓𝐓(𝒕𝒕) = 𝟎𝟎, (22) 

𝐌𝐌�𝟏𝟏𝐇𝐇(𝟎𝟎) = 𝐅𝐅�𝟏𝟏,                            (23) 

𝐌𝐌𝟐𝟐(𝐇𝐇)
𝑑𝑑𝐓𝐓
𝑑𝑑𝑑𝑑

+ 𝐋𝐋𝟐𝟐(𝐇𝐇,𝐓𝐓)𝐓𝐓(𝒕𝒕) = 𝟎𝟎,    (24) 

𝐌𝐌�𝟐𝟐𝐓𝐓(𝟎𝟎) = 𝐅𝐅�𝟐𝟐,                              (25) 
Де 
𝐅𝐅�𝑘𝑘 = �𝑓𝑓𝑖𝑖

(𝑘𝑘)�
𝑖𝑖=1

𝑁𝑁
, 𝐌𝐌�𝑘𝑘 = �𝑚𝑚�𝑖𝑖𝑖𝑖

(𝑘𝑘)�
𝑖𝑖,𝑗𝑗=1

𝑁𝑁
, 𝐌𝐌𝑘𝑘 = �𝑚𝑚𝑖𝑖𝑖𝑖

(𝑘𝑘)�
𝑖𝑖,𝑗𝑗=1

𝑁𝑁
, 

𝐋𝐋𝑘𝑘 = �𝑙𝑙𝑖𝑖𝑖𝑖
(𝑘𝑘)�

𝑖𝑖,𝑗𝑗=1

𝑁𝑁
, 𝑘𝑘 = 1,2; 𝐋𝐋12 = �𝑙𝑙𝑖𝑖𝑖𝑖

(12)�
𝑖𝑖,𝑗𝑗=1

𝑁𝑁
,𝑚𝑚�𝑖𝑖𝑖𝑖

(𝑘𝑘) =

∫ 𝜑𝜑𝑖𝑖𝜑𝜑𝑗𝑗𝑑𝑑𝑑𝑑,𝑙𝑙
0  𝑓𝑓𝑖𝑖

(1) = ∫ ℎ0
0
0 𝜑𝜑𝑖𝑖𝑑𝑑𝑑𝑑, 𝑓𝑓𝑖𝑖

(2) = ∫ 𝑇𝑇0
0
0 𝜑𝜑𝑖𝑖𝑑𝑑𝑑𝑑, 𝐇𝐇 =

�ℎ𝑖𝑖(𝑡𝑡)�𝑖𝑖=1
𝑁𝑁

, 𝐓𝐓 = �𝑇𝑇𝑖𝑖(𝑡𝑡)�𝑖𝑖=1
𝑁𝑁

,  𝐇𝐇(𝟎𝟎) = �ℎ𝑖𝑖(0)�
𝑖𝑖=1
𝑁𝑁

, 𝐓𝐓(𝟎𝟎) =

�𝑇𝑇𝑖𝑖(0)�
𝑖𝑖=1
𝑁𝑁

, 𝑚𝑚𝑖𝑖𝑖𝑖
(1) = ∫ 𝛾𝛾𝛾𝛾

1+𝑒𝑒
𝜑𝜑𝑖𝑖𝜑𝜑𝑗𝑗𝑑𝑑𝑑𝑑

𝑙𝑙
0 , 

𝑙𝑙𝑖𝑖𝑖𝑖
(1) = �𝑘𝑘�ℎ� ,𝑇𝑇��

𝑑𝑑𝜑𝜑𝑖𝑖
𝑑𝑑𝑑𝑑

𝑙𝑙

0

𝑑𝑑𝜑𝜑𝑗𝑗
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑 +
[𝜑𝜑𝑖𝑖]�𝜑𝜑𝑗𝑗�

∫ 𝑑𝑑𝑑𝑑
𝑘𝑘𝜔𝜔(ℎ�,𝑇𝑇�)

𝑑𝑑
0

, 

𝑙𝑙𝑖𝑖𝑖𝑖
(12) = �𝜇𝜇�ℎ��

𝑑𝑑𝜑𝜑𝑖𝑖
𝑑𝑑𝑑𝑑

𝑙𝑙

0

𝑑𝑑𝜑𝜑𝑗𝑗
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑 +
[𝜑𝜑𝑖𝑖]�𝜑𝜑𝑗𝑗�

∫ 𝑑𝑑𝑑𝑑
𝜇𝜇𝜔𝜔(ℎ�)

𝑑𝑑
0

, 

𝑚𝑚𝑖𝑖𝑖𝑖
(2) = ∫ 𝑐𝑐𝑠𝑠𝜑𝜑𝑖𝑖𝜑𝜑𝑗𝑗𝑑𝑑𝑑𝑑

𝑙𝑙
0 , 

𝑙𝑙𝑖𝑖𝑖𝑖
(2) = �𝜆𝜆(ℎ�)

𝑑𝑑𝜑𝜑𝑖𝑖
𝑑𝑑𝑑𝑑

𝑙𝑙

0

𝑑𝑑𝜑𝜑𝑗𝑗
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑 + �𝜌𝜌𝑤𝑤𝑐𝑐𝑤𝑤𝑢𝑢
𝑑𝑑𝑑𝑑𝑗𝑗
𝑑𝑑𝑑𝑑

𝑙𝑙

0

𝜑𝜑𝑖𝑖𝑑𝑑𝑑𝑑

+
[𝜑𝜑𝑖𝑖]�𝜑𝜑𝑗𝑗�

∫ 𝑑𝑑𝑑𝑑
𝜆𝜆𝜔𝜔�ℎ��

𝑑𝑑
0

. 

Задача (22)-(25) є задачею Коші для системи 
нелінійних диференціальних рівнянь першого 
порядку. Відшукання її розв’язку теж вимагає 
застосування відповідних схем дискретизації. В [6] 
обґрунтовано застосування схеми Кранка-Ніколсона 

 

𝐌𝐌𝟏𝟏 �𝐇𝐇�𝑗𝑗+1 2� ��
𝐇𝐇(𝑗𝑗+1) −𝐇𝐇(𝑗𝑗)

𝜏𝜏
+ 𝐋𝐋𝟏𝟏 �𝐇𝐇�𝑗𝑗+1 2� �,𝐓𝐓�𝑗𝑗+1 2� ��𝐇𝐇�𝑗𝑗+1 2� �

+ 𝐋𝐋𝟏𝟏𝟏𝟏 �𝐇𝐇�𝑗𝑗+1 2� ��𝐓𝐓�𝑗𝑗+1 2� � = 𝟎𝟎, 

𝐌𝐌𝟐𝟐 �𝐇𝐇�𝑗𝑗+1 2� ��
𝐓𝐓(𝑗𝑗+1) − 𝐓𝐓(𝑗𝑗)

𝜏𝜏
+ 𝐋𝐋𝟐𝟐 �𝐇𝐇�𝑗𝑗+1 2� �,𝐓𝐓�𝑗𝑗+1 2� �� 𝐓𝐓�𝑗𝑗+1 2� �

= 𝟎𝟎, 𝑗𝑗 = 0,1,2, . . . ,𝑚𝑚𝜏𝜏 − 1. 
Тут часовий відрізок [0,𝒯𝒯]  розбитий на 𝑚𝑚𝜏𝜏  рівних 
частин з кроком 𝜏𝜏 = 𝒯𝒯

𝑚𝑚𝜏𝜏
; 𝐇𝐇(𝑗𝑗) , 𝐓𝐓(𝑗𝑗)  - наближений 

розв’язок задачі Коші при 𝑡𝑡 = 𝑗𝑗𝑗𝑗 , 𝐇𝐇�𝑗𝑗+1 2� � =
1
2
�𝐇𝐇(𝑗𝑗+1) + 𝐇𝐇(𝑗𝑗)�, 𝐓𝐓�𝑗𝑗+1 2� � = 1

2
�𝐓𝐓(𝑗𝑗+1) + 𝐓𝐓(𝑗𝑗)�. Також 

введемо наступні позначення: ℎ(𝑗𝑗), 𝑇𝑇(𝑗𝑗) - класичний 
розв’язок початково-крайової задачі (1)-(10) при 𝑡𝑡 =
𝑗𝑗𝑗𝑗 ;  ℎ̑(𝑗𝑗) , 𝑇̑𝑇(𝑗𝑗)  - наближений узагальнений розв’язок 
початково-крайової задачі (1)-(10) при 𝑡𝑡 = 𝑗𝑗𝑗𝑗 ; 
𝜙𝜙�𝑗𝑗+1 2� � = 1

2
(𝜙𝜙(𝑗𝑗+1) + 𝜙𝜙(𝑗𝑗)); 𝑧𝑧ℎ

(𝑗𝑗) = ℎ(𝑗𝑗) −  ℎ̑(𝑗𝑗), 𝑧𝑧𝑇𝑇
(𝑗𝑗) =

𝑇𝑇(𝑗𝑗) −  𝑇̑𝑇(𝑗𝑗). 
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Однак практична реалізація схеми Кранка-
Ніколсона стосовно нелінійної задачі Коші (22)-(25) 
вимагає застосування ітерацій. Замість схеми 
Кранка-Ніколсона можна використати схему 
предиктор-коректор [6]. З точки зору простоти 
практичної реалізації добре зарекомендувала себе 
повністю неявна лінеаризована різницева схема [12, 
13].  

V. АПРОКСИМАЦІЯ КІНЕМАТИЧНОЇ 
ГРАНИЧНОЇ УМОВИ 

Умова (11) не зручна безпосередньо для числового 
обрахунку просідань поверхні ґрунту. Тому, 
аналогічно до [5], в (11) підставимо швидкість 
фільтрації, визначену згідно закону фільтрації 

𝑢𝑢 = −𝑘𝑘(ℎ,𝑇𝑇)
𝜕𝜕ℎ
𝜕𝜕𝜕𝜕

− 𝜇𝜇(ℎ)
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

. 

Маємо 

𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= �
𝜕𝜕
𝜕𝜕𝜕𝜕

�𝑘𝑘(ℎ,𝑇𝑇)
𝜕𝜕ℎ
𝜕𝜕𝜕𝜕

+ 𝜇𝜇(ℎ)
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑑𝑑𝑑𝑑

𝑙𝑙(𝑡𝑡)

0

. 

Далі, використовуючи рівняння (1), з вищенаведеної 
рівності маємо 

𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= �
𝛾𝛾𝛾𝛾

1 + 𝑒𝑒
𝜕𝜕ℎ
𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑

𝑙𝑙(𝑡𝑡)

0

.          (26) 

Застосовуючи до (26) дискретизацію в часі згідно 
неявної різницевої схеми, отримаємо 

𝑙𝑙(𝑗𝑗+1) − 𝑙𝑙(𝑗𝑗)

𝜏𝜏
= �

𝛾𝛾𝛾𝛾
1 + 𝑒𝑒(𝑗𝑗+1)

ℎ(𝑗𝑗+1) − ℎ(𝑗𝑗)

𝜏𝜏
𝑑𝑑𝑑𝑑

𝑙𝑙(𝑗𝑗)

0

, 𝑗𝑗

= 0,1,2, … 

Звідки 

𝑙𝑙(𝑗𝑗+1) = 𝑙𝑙(𝑗𝑗) + �
𝛾𝛾𝛾𝛾

1 + 𝑒𝑒(𝑗𝑗+1) �ℎ
(𝑗𝑗+1) − ℎ(𝑗𝑗)�𝑑𝑑𝑑𝑑

𝑙𝑙(𝑗𝑗)

0

.  (27) 

Тут 𝑙𝑙(𝑗𝑗+1) = 𝑙𝑙�𝑡𝑡𝑗𝑗+1� , 𝑗𝑗 = 0,1,2, …  В (27) положення 
𝑙𝑙(𝑗𝑗) є відомим, як власне і значення ℎ(𝑗𝑗+1), 𝑒𝑒(𝑗𝑗+1) та 
ℎ(𝑗𝑗) . Відмітимо, що значення напорів, згідно 
алгоритму, на часовому шарі (𝑗𝑗 + 1)  шукаємо, 
використовуючи положення верхньої межі 𝑙𝑙(𝑗𝑗) . 
Інтеграл в (27) можна знайти, використовуючи 
формули числового інтегрування. 

 

VI. ВИСНОВКИ 

Таким чином, в роботі сформовано математичну 
модель неізотермічної фільтраційної консолідації 
неоднорідного масиву ґрунту з урахуванням зміни 
розмірів області в процесі ущільнення. 
Запропоновано схеми скінченноелементних 
розв’язків початково-крайової задачі для системи 
нелінійних параболічних рівнянь в неоднорідній 

області з інтегральною умовою спряження. Наведені 
теоретичні результати є передумовою для 
програмної реалізації наведених числових схем та 
створення відповідного програмного забезпечення з 
метою прогнозування перебігу досліджуваних 
процесів. 
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