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Abstract— This thesis investigates the ill-posed problem
of reconstructing the pressure time profile p(t) on a
structure from discrete impulse data obtained in a 2D
Discrete Element Method (DEM) simulation of blast
loading. A systematic comparative analysis of six
reconstruction methods is carried out: interval averaging,
trapezoidal rule inversion, direct differentiation of
cumulative impulse, cubic spline approximation, Savitzky-
Golay filtering, and Tikhonov regularization with a non-
negativity constraint. To assess the quality and physical
adequacy of the solutions, a comprehensive system of
metrics was developed, including smoothness, integral
conservation (energy balance), and the fraction of non-
physical negative values. For comparison with
experimental data, a robust procedure is proposed that
includes automatic time scale calibration and scale-
independent signal shape validation. All results presented
in the article are generated automatically within a single
computational pipeline. The analysis shows that direct
differentiation methods are critically unstable, while the
Tikhonov regularization method with automatic
parameter selection via Generalized Cross-Validation
demonstrates the best trade-off between stability,
smoothness, and fidelity to the source data.
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1. INTRODUCTION

The assessment of dynamic loads from shock waves
on infrastructure elements is a critical task for ensuring
their safety and stability. In many cases, both in physical
experiments and computer simulations, direct
measurement of pressure is difficult. Instead, the integral
characteristic: impulse is easier to measure, by recording
particle collisions with an obstacle in the simulation.

This work focuses on the inverse problem: restoring
the time dependence of pressure p(t) from a known time
series of impulse increments Al(t), obtained from a 2D
DEM (Discrete Element Method) simulation. From a
mathematical point of view, this problem is ill-posed, as
it requires differentiating noisy data, which is an unstable
operation. Therefore, to obtain a physically adequate
solution, it is necessary to apply regularization methods
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and consider a priori constraints, particularly the non-
negativity of pressure p(t) = 0.

II. DEM SIMULATION AND IMPULSE MEASUREMENT

The data for the analysis is generated in a 2D DEM
simulation, which models the movement of "air"
particles colliding with a stationary modular structure
[1]. A key aspect of the simulation is the use of a
deterministic time axis based on the number of steps the
physical engine processed during the simulation, which
ensures full reproducibility of the results.

For each particle contact with the structure, the time
of collision, mass, and velocity of the particle are
recorded. The impulse of a single event is calculated as

Aeyene = V|- m.

III. COMPUTATIONAL PIPELINE

The data processing and pressure reconstruction are
executed through an automated pipeline. This procedure
commences with a preprocessing stage, wherein
collision events are temporally sorted and aggregated
within discrete time steps, enabling the calculation of
precise time intervals (At). To address methods
susceptible to outliers, a robust winsorization procedure
is applied to the impulse data at the 1st and 99th
percentiles, which mitigates the influence of extreme
values without compromising the overall integral.
Following preprocessing, time scale alignment is
performed by automatically scaling the simulation's time
axis to ensure accurate comparison with experimental
data. The scaling factor is calibrated to match the full
width at half maximum (FWHM) of a preliminary
reconstruction with its experimental counterpart.
Subsequently, pressure reconstruction is conducted
using the six methodologies (M1-M6) detailed in Section
4, with careful consideration of non-uniform time steps
(At). Reconstruction Methods (M1-M6)

Let us denote the discrete time intervals as Aty, the
corresponding impulse increments as Al,, and the
cumulative impulse as I, (t).
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The initial methodology, Interval Averaging (M1),
calculates pressure through the fundamental relation

A . . .
Pr = f. While this elemental method ensures integral
k

conservation [2], it yields a piecewise-constant, non-
smooth profile, thereby serving as a stable baseline for
comparative analysis.

The second methodology, Trapezoidal Rule
Inversion (M2), is based on the recursive formula p;, =
2-Al,
Ay
method should generate a linear pressure profile;
however, in practice, it exhibits critical instability due to
error propagation, which results in non-physical
oscillations.

Pr-1[3], initialized with py = 0. In theory, this

The third methodology, Differentiation of
Cumulative Impulse (M3)[4], approximates pressure
using the central difference formula:

p(ty) ~ Zk+1:ik—1'
k+1 k-1
This constitutes a direct numerical implementation of
the definition of pressure as the impulse derivative.
While it circumvents the recursive instability of M2, it is
highly susceptible to the amplification of noise present
in the source data.

The fourth methodology, Cubic Splines (M4)[5],
involves approximating the cumulative impulse function
Iym (t) with a smooth cubic spline, S(t), followed by
analytical differentiation to obtain the pressure profile:
p(t) = S'(t). This technique yields a continuously
differentiable profile but may introduce numerical
artifacts, such as oscillations and negative "tails,"
particularly at the interval boundaries.

The fifth methodology, the Savitzky-Golay Filter
(M5), performs local polynomial smoothing on the
cumulative impulse I,,;,, within a moving window [6],
concurrently computing its derivative. The optimal
parameters—a window size of 21 and a polynomial
order of 2—were determined via a grid search
methodology. This parameter set was selected for its
efficacy in minimizing the trade-off between smoothness
and the impulse balance error. This filter represents an
effective technique for simultaneous smoothing and
differentiation.

The final methodology, Tikhonov Regularization
(M6) [7], is formulated as the solution to a system of
linear equations Ap = b, where A is the integration
operator matrix. The system is regularized to obtain a
smooth and stable solution by minimizing the functional

|Ap — bl5 + 22|Dpl3,

where D is the second-difference matrix (a "non-
smoothness" operator), and A is the regularization
parameter.

IV. CONCLUSION

The data unequivocally demonstrates the critical
instability of method M2, which is manifested in
enormous roughness, a large fraction of negative values,
and a catastrophic balance error. Method M3 is also
unstable. Methods using smoothing (M4, M5, M6) show
significantly better results. M5 provides the highest
smoothness but has a small balance error and a fraction
of negative values. Method M6 with GCV regularization
and projection guarantees complete non-negativity with
acceptable smoothness and a relatively small balance
error, making it the most balanced.
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