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Abstract— This thesis investigates the ill-posed problem 
of reconstructing the pressure time profile p(t) on a 
structure from discrete impulse data obtained in a 2D 
Discrete Element Method (DEM) simulation of blast 
loading. A systematic comparative analysis of six 
reconstruction methods is carried out: interval averaging, 
trapezoidal rule inversion, direct differentiation of 
cumulative impulse, cubic spline approximation, Savitzky-
Golay filtering, and Tikhonov regularization with a non-
negativity constraint. To assess the quality and physical 
adequacy of the solutions, a comprehensive system of 
metrics was developed, including smoothness, integral 
conservation (energy balance), and the fraction of non-
physical negative values. For comparison with 
experimental data, a robust procedure is proposed that 
includes automatic time scale calibration and scale-
independent signal shape validation. All results presented 
in the article are generated automatically within a single 
computational pipeline. The analysis shows that direct 
differentiation methods are critically unstable, while the 
Tikhonov regularization method with automatic 
parameter selection via Generalized Cross-Validation 
demonstrates the best trade-off between stability, 
smoothness, and fidelity to the source data. 
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I. INTRODUCTION 
The assessment of dynamic loads from shock waves 

on infrastructure elements is a critical task for ensuring 
their safety and stability. In many cases, both in physical 
experiments and computer simulations, direct 
measurement of pressure is difficult. Instead, the integral 
characteristic: impulse is easier to measure, by recording 
particle collisions with an obstacle in the simulation. 

This work focuses on the inverse problem: restoring 
the time dependence of pressure 𝑝𝑝(𝑡𝑡) from a known time 
series of impulse increments Δ𝐼𝐼(𝑡𝑡), obtained from a 2D 
DEM (Discrete Element Method) simulation. From a 
mathematical point of view, this problem is ill-posed, as 
it requires differentiating noisy data, which is an unstable 
operation. Therefore, to obtain a physically adequate 
solution, it is necessary to apply regularization methods 

and consider a priori constraints, particularly the non-
negativity of pressure 𝑝𝑝(𝑡𝑡) ≥  0. 

II. DEM SIMULATION AND IMPULSE MEASUREMENT 
The data for the analysis is generated in a 2D DEM 

simulation, which models the movement of "air" 
particles colliding with a stationary modular structure 
[1].  A key aspect of the simulation is the use of a 
deterministic time axis based on the number of steps the 
physical engine processed during the simulation, which 
ensures full reproducibility of the results. 

For each particle contact with the structure, the time 
of collision, mass, and velocity of the particle are 
recorded. The impulse of a single event is calculated as  

Δ𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =  |𝑣𝑣| ⋅ 𝑚𝑚. 

III. COMPUTATIONAL PIPELINE 
The data processing and pressure reconstruction are 

executed through an automated pipeline. This procedure 
commences with a preprocessing stage, wherein 
collision events are temporally sorted and aggregated 
within discrete time steps, enabling the calculation of 
precise time intervals (Δ𝑡𝑡 ). To address methods 
susceptible to outliers, a robust winsorization procedure 
is applied to the impulse data at the 1st and 99th 
percentiles, which mitigates the influence of extreme 
values without compromising the overall integral. 
Following preprocessing, time scale alignment is 
performed by automatically scaling the simulation's time 
axis to ensure accurate comparison with experimental 
data. The scaling factor is calibrated to match the full 
width at half maximum (FWHM) of a preliminary 
reconstruction with its experimental counterpart. 
Subsequently, pressure reconstruction is conducted 
using the six methodologies (M1-M6) detailed in Section 
4, with careful consideration of non-uniform time steps 
(Δ𝑡𝑡 ). Reconstruction Methods (M1–M6) 

Let us denote the discrete time intervals as Δ𝑡𝑡𝑘𝑘, the 
corresponding impulse increments as Δ𝐼𝐼𝑘𝑘, and the 
cumulative impulse as  𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡). 
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The initial methodology, Interval Averaging (M1), 
calculates pressure through the fundamental relation 
𝑝𝑝𝑘𝑘 = Δ𝐼𝐼𝑘𝑘

Δ𝑡𝑡𝑘𝑘
. While this elemental method ensures integral 

conservation [2], it yields a piecewise-constant, non-
smooth profile, thereby serving as a stable baseline for 
comparative analysis. 

The second methodology, Trapezoidal Rule 
Inversion (M2), is based on the recursive formula 𝑝𝑝𝑘𝑘 =
2⋅Δ𝐼𝐼𝑘𝑘
Δ𝑡𝑡𝑘𝑘

−  𝑝𝑝𝑘𝑘−1[3], initialized with 𝑝𝑝0 = 0. In theory, this 
method should generate a linear pressure profile; 
however, in practice, it exhibits critical instability due to 
error propagation, which results in non-physical 
oscillations. 

The third methodology, Differentiation of 
Cumulative Impulse (M3)[4], approximates pressure 
using the central difference formula: 

 𝑝𝑝(𝑡𝑡𝑘𝑘) ≈ 𝐼𝐼𝑘𝑘+1−𝐼𝐼𝑘𝑘−1
𝑡𝑡𝑘𝑘+1−𝑡𝑡𝑘𝑘−1

.  

This constitutes a direct numerical implementation of 
the definition of pressure as the impulse derivative. 
While it circumvents the recursive instability of M2, it is 
highly susceptible to the amplification of noise present 
in the source data. 

The fourth methodology, Cubic Splines (M4)[5], 
involves approximating the cumulative impulse function 
𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡) with a smooth cubic spline, 𝑆𝑆(𝑡𝑡), followed by 
analytical differentiation to obtain the pressure profile: 
𝑝𝑝(𝑡𝑡) = 𝑆𝑆′(𝑡𝑡). This technique yields a continuously 
differentiable profile but may introduce numerical 
artifacts, such as oscillations and negative "tails," 
particularly at the interval boundaries. 

The fifth methodology, the Savitzky-Golay Filter 
(M5), performs local polynomial smoothing on the 
cumulative impulse 𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐 within a moving window [6], 
concurrently computing its derivative. The optimal 
parameters—a window size of 21 and a polynomial 
order of 2—were determined via a grid search 
methodology. This parameter set was selected for its 
efficacy in minimizing the trade-off between smoothness 
and the impulse balance error. This filter represents an 
effective technique for simultaneous smoothing and 
differentiation. 

The final methodology, Tikhonov Regularization 
(M6) [7], is formulated as the solution to a system of 
linear equations 𝐴𝐴𝐴𝐴 = 𝑏𝑏 , where 𝐴𝐴  is the integration 
operator matrix. The system is regularized to obtain a 
smooth and stable solution by minimizing the functional 

 |𝐴𝐴𝐴𝐴  −  𝑏𝑏|22 +  𝜆𝜆2|𝐷𝐷𝐷𝐷|22,  

where 𝐷𝐷  is the second-difference matrix (a "non-
smoothness" operator), and 𝜆𝜆 is the regularization 
parameter. 

IV. CONCLUSION 
 The data unequivocally demonstrates the critical 

instability of method M2, which is manifested in 
enormous roughness, a large fraction of negative values, 
and a catastrophic balance error. Method M3 is also 
unstable. Methods using smoothing (M4, M5, M6) show 
significantly better results. M5 provides the highest 
smoothness but has a small balance error and a fraction 
of negative values. Method M6 with GCV regularization 
and projection guarantees complete non-negativity with 
acceptable smoothness and a relatively small balance 
error, making it the most balanced. 
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