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Анотація — У статті пропонується алгоритм, який 

значно розширить сферу застосування поліноміальних 
прогнозів. Цей алгоритм базується на процедурі 
побудови послідовності всіх поліноміальних прогнозів 
на основі відомих даних та аналізу цих прогнозів. Потім 
уточнений прогноз будується як середнє арифметичне 
певної кількості перших елементів послідовності. У 
статті досліджуються похибки екстраполяції та 
запропоновано алгоритм знаходження оптимальної 
кількості елементів послідовності поліноміальних 
прогнозів, для яких будується усереднення. Числові 
результати, представлені в статті, демонструють 
ефективність методики прогнозування на основі 
усереднення поліноміальних прогнозів. Зокрема, для 
тестових прикладів відносна похибка становила 
близько 2%. 

Ключові слова — спостереження; прогнозування; 
екстраполяція; метод; сітка; алгоритм; многочлен;  
похибка. 

I. ВСТУП  
Наука про дані сьогодні є надзвичайно 

популярною. Всі звикли говорити про великі дані, 
однак проблеми, пов’язані з малими даними, є не 
менш важливими. Однією з фундаментальних 
проблем в науці про дані є проблема прогнозування. 
Задачі прогнозування часових рядів є актуальними і 
сьогодні, незважаючи на наявність великої кількості 

відомих методів та підходів. Ці задачі тісно пов’язані 
з екстраполяцією та інтерполяцією функцій.  

В той час, коли задачі інтерполяції функцій добре 
вивчені, існує низка ефективних інтерполяційних 
методів, проблема екстраполяції  залишається в 
багатох аспектах відкритою. Адже реальні процеси 
часто мають суттєву стохастичну складову, 
експериментальні дані можуть бути неповними, 
обмеженими, спотвореними. Математичні методи, 
що використовується для побудови прогнозів, 
обмежені проблемою адекватності математичної 
моделі, ступенем стохастичності процесу, що 
досліджується. Адже стохастичний процес 
неможливо спрогнозувати при одному експерименті 
взагалі і тоді говорять про певні усереднені 
характеристики.  

На практиці часто виникають невеликі часові 
ряди спостережень для яких проблематично 
визначити адекватну математичну модель, зокрема, 
через недостатність інформації. Це стосується, 
наприклад, різноманітних рядів економічної 
динаміки, коли ступінь стохастичності залежить від 
інтервалів між спостереженнями: при великих 
інтервалах процес можна розглядати як 
стохастичний, при малих – умовно детермінований, 
якщо враховувати певну інерційність економічних 
систем. При цьому задача прогнозування таких 
процесів часто є критично важливою, особливо якщо 
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це стосується військової галузі. Таким чином, 
дослідження, присвячені екстраполяційним задачам є 
актуальними. 

II. ОГЛЯД ЛІТЕРАТУРНИХ ДЖЕРЕЛ 
У контексті короткострокового прогнозування 

детермінованих процесів актуальною є задача 
екстраполяції функції, заданої таблично. Серед 
численних методів екстраполяції особливе місце 
посідають підходи, що ґрунтуються на використанні 
інтерполяційних многочленів. Проблематика такого 
типу задач висвітлена у працях [1] - [5].  

Питання наближення неперервних і 
диференційовних функцій многочленами є одним із 
класичних у теорії апроксимації. Зокрема, відомі 
теореми Вейєрштрасса, Дзядика та Тімана [1] 
доводять можливість наближення будь-якої 
неперервної функції на скінченному інтервалі 
многочленом із довільно малою похибкою. На основі 
цих результатів сформульовано підхід до 
екстраполяції, який часто позначають принципом 
“добре проінтерполюй — обережно 
проекстраполюй”.  

У межах такого підходу найчастіше 
застосовуються інтерполяційні многочлени Ньютона 
другого виду [2] або узагальнені інтерполяційні 
многочлени, побудовані на базі систем функцій 
Чебишева [3], [4], зокрема експоненційних і 
тригонометричних. Окрім цього, значного 
поширення набули методи екстраполяції, що 
базуються на аналізі трендів [5], радіальних базисних 
функціях, сплайнах (кубічних, B-сплайнах) та кривих 
типу Безьє, які не проходять безпосередньо через 
точки інтерполяції. 

У сучасних дослідженнях активно 
застосовуються також статистичні та імовірнісні 
підходи [5], серед яких варто відзначити геометричні 
методи, що враховують середньоарифметичні 
співвідношення елементів часових рядів, а також 
байєсівські процедури прогнозування. Вагоме місце 
у задачах прогнозування займають методи 
машинного навчання та штучних нейронних мереж. 

Варто зазначити, що більшість відомих методів 
ґрунтується на певному припущенні щодо типу 
функції, яка описує поведінку процесу. Очевидно, що 
для будь-якої множини точок існує безліч кривих, які 
можуть точно проходити через них або наближати їх 
із певною точністю. Тому складно обґрунтовано 
стверджувати, що саме одна з таких кривих є 
істинним законом, який описує досліджуване явище 
та забезпечує достовірне прогнозування його 
подальшої еволюції.  

Практичні результати свідчать, що екстраполяція 
на основі многочленів часто демонструє низьку 
ефективність, особливо за межами інтервалу 
інтерполяції. Це зумовлює необхідність пошуку 
способів удосконалення полііноміальних методів та 
їх поєднання з іншими підходами. Метою даного 
дослідження є спроба інтеграції методів 
поліноміального прогнозування зі статистичними 
підходами та технологіями інтелектуального аналізу 
даних, що дозволяє підвищити точність прогнозів і 
розширити практичні можливості класичних методів 
екстраполяції. 

III. АЛГОРИТМ ПРОГНОЗУВАННЯ 
Розглянемо спочатку декілька необхідних 

допоміжних тверджень . 

Твердження 1. Нехай маємо рівномірну сітку з 
кроком  𝛥𝛥, відомі значення деякої функції 𝑓𝑓𝑖𝑖 =
𝑓𝑓(𝑖𝑖𝑖𝑖), 𝑖𝑖 = 𝑛𝑛,𝑛𝑛 − 1, … ,𝑛𝑛 − 𝑚𝑚 + 1. Тоді прогнозне 
значення функції в точці n+1, побудоване на основі 
інтерполяційного многочлена степеня 𝑚𝑚 − 1 , може 
бути знайдене на основі співвідношення: 

𝑓𝑓𝑛𝑛+1𝑚𝑚 = � (−1)𝑘𝑘−1𝐶𝐶𝑚𝑚𝑘𝑘 𝑓𝑓𝑛𝑛−𝑘𝑘+1
𝑚𝑚
𝑘𝑘=1  (1) 

Це твердження доведене в роботі [1]. 

Твердження 2.  Має місце співвідношення: 

� 𝑓𝑓𝑛𝑛+1𝑖𝑖𝑚𝑚−1
𝑖𝑖=1 = � (−1)𝑘𝑘𝐶𝐶𝑚𝑚𝑘𝑘 𝑓𝑓𝑛𝑛−𝑘𝑘+2

𝑚𝑚
𝑘𝑘=2   (2) 

Розглянемо доведення. Маємо: 
� (−1)𝑘𝑘𝐶𝐶𝑚𝑚𝑘𝑘 𝑓𝑓𝑛𝑛−𝑘𝑘+2

𝑚𝑚
𝑘𝑘=2 = |𝑙𝑙 = 𝑘𝑘 − 1| =

                          = � (−1)𝑙𝑙+1𝐶𝐶𝑚𝑚𝑙𝑙+1𝑓𝑓𝑛𝑛−𝑙𝑙+1
𝑚𝑚−1
𝑙𝑙=1 , 

� 𝑓𝑓𝑛𝑛+1𝑖𝑖𝑚𝑚−1
𝑖𝑖=1 = ∑ ∑ (−1)𝑙𝑙−1𝐶𝐶𝑖𝑖𝑙𝑙𝑓𝑓𝑛𝑛−𝑙𝑙+1𝑖𝑖

𝑙𝑙=1
𝑚𝑚−1
𝑖𝑖=1 =

                    = ∑ 𝑓𝑓𝑛𝑛−𝑙𝑙+1(−1)𝑙𝑙−1 ∑ 𝐶𝐶𝑖𝑖𝑙𝑙𝑚𝑚−1
𝑖𝑖=𝑙𝑙

𝑚𝑚−1
𝑙𝑙=1 . 

Скористаємося відомим комбінаторним 
співвідношенням: 

�𝐶𝐶𝑘𝑘𝑖𝑖 =
𝑛𝑛

𝑘𝑘=𝑖𝑖

𝐶𝐶𝑛𝑛+1𝑖𝑖+1 , 𝑖𝑖 = 0,1,2, … 

Тоді виконується рівність: 
∑ 𝐶𝐶𝑖𝑖𝑙𝑙𝑚𝑚−1
𝑖𝑖=𝑙𝑙 = 𝐶𝐶𝑚𝑚𝑙𝑙+1. 

Отже, 

� 𝑓𝑓𝑛𝑛−𝑙𝑙+1(−1)𝑙𝑙−1 � 𝐶𝐶𝑖𝑖𝑙𝑙
𝑚𝑚−1

𝑖𝑖=𝑙𝑙

= � 𝑓𝑓𝑛𝑛−𝑙𝑙+1(−1)𝑙𝑙−1𝐶𝐶𝑚𝑚𝑙𝑙+1
𝑚𝑚−1

𝑙𝑙=1

𝑚𝑚−1

𝑙𝑙=1

= � 𝑓𝑓𝑛𝑛−𝑙𝑙+1(−1)𝑙𝑙+1𝐶𝐶𝑚𝑚𝑙𝑙+1
𝑚𝑚−1

𝑙𝑙=1

 

Отримали співвідношення (2). 

Розглянемо детальніше формулу (1) та виконаємо 
серію перетворень: 

𝑓𝑓𝑛𝑛+1𝑚𝑚 = �(−1)𝑘𝑘−1𝐶𝐶𝑚𝑚𝑘𝑘 𝑓𝑓𝑛𝑛−𝑘𝑘+1

𝑚𝑚

𝑘𝑘=1

=

= 𝐶𝐶𝑚𝑚1 𝑓𝑓𝑛𝑛 + �(−1)𝑘𝑘−1𝐶𝐶𝑚𝑚𝑘𝑘 𝑓𝑓𝑛𝑛−𝑘𝑘+1

𝑚𝑚

𝑘𝑘=2

=

= 𝐶𝐶𝑚𝑚1 𝑓𝑓𝑛𝑛 + �(−1)𝑘𝑘−1𝐶𝐶𝑚𝑚𝑘𝑘 𝑓𝑓𝑛𝑛−𝑘𝑘+1

𝑚𝑚

𝑘𝑘=2

−

−�(−1)𝑘𝑘𝐶𝐶𝑚𝑚𝑘𝑘 𝑓𝑓𝑛𝑛−𝑘𝑘+2

𝑚𝑚

𝑘𝑘=2

+ �(−1)𝑘𝑘𝐶𝐶𝑚𝑚𝑘𝑘 𝑓𝑓𝑛𝑛−𝑘𝑘+2

𝑚𝑚

𝑘𝑘=2

=

= 𝐶𝐶𝑚𝑚1 𝑓𝑓𝑛𝑛 + �(−1)𝑘𝑘−1𝐶𝐶𝑚𝑚𝑘𝑘 (𝑓𝑓𝑛𝑛−𝑘𝑘+1 −
𝑚𝑚

𝑘𝑘=2

𝑓𝑓𝑛𝑛−𝑘𝑘+2) −

−�(−1)𝑘𝑘𝐶𝐶𝑚𝑚𝑘𝑘 𝑓𝑓𝑛𝑛−𝑘𝑘+2

𝑚𝑚

𝑘𝑘=2

=

= 𝐶𝐶𝑚𝑚1 𝑓𝑓𝑛𝑛 + �(−1)𝑘𝑘−1𝐶𝐶𝑚𝑚𝑘𝑘 (𝑓𝑓𝑛𝑛−𝑘𝑘+1 −
𝑚𝑚

𝑘𝑘=2

𝑓𝑓𝑛𝑛−𝑘𝑘+2) − � 𝑓𝑓𝑛𝑛+1𝑖𝑖
𝑚𝑚−1

𝑖𝑖=1

.

 

Звідси отримуємо: 
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0 = 𝐶𝐶𝑚𝑚1 𝑓𝑓𝑛𝑛 + � (−1)𝑘𝑘−1𝐶𝐶𝑚𝑚𝑘𝑘 (𝑓𝑓𝑛𝑛−𝑘𝑘+1 −
𝑚𝑚
𝑘𝑘=2 𝑓𝑓𝑛𝑛−𝑘𝑘+2) −

−� 𝑓𝑓𝑛𝑛+1𝑖𝑖𝑚𝑚
𝑖𝑖=1 , 

1
𝑚𝑚
� 𝑓𝑓𝑛𝑛+1𝑖𝑖𝑚𝑚

𝑖𝑖=1 = 𝑓𝑓𝑛𝑛 +
+ 1

𝑚𝑚
� (−1)𝑘𝑘−1𝐶𝐶𝑚𝑚𝑘𝑘 (𝑓𝑓𝑛𝑛−𝑘𝑘+1 −

𝑚𝑚
𝑘𝑘=2 𝑓𝑓𝑛𝑛−𝑘𝑘+2). (3) 

Будемо шукати невідоме прогнозне значення 𝑓𝑓𝑛𝑛+1 у 
вигляді: 

𝑓𝑓𝑛𝑛+1 = 1
𝑚𝑚
� 𝑓𝑓𝑛𝑛+1𝑖𝑖𝑚𝑚

𝑖𝑖=1 + 𝜀𝜀(𝑚𝑚)   (4) 

Тоді з врахуванням (4) з співвідношення (3) 
отримуємо: 

𝑓𝑓𝑛𝑛+1 − 𝜀𝜀(𝑚𝑚) = 𝑓𝑓𝑛𝑛 + 

+
1
𝑚𝑚
�(−1)𝑘𝑘−1𝐶𝐶𝑚𝑚𝑘𝑘 (𝑓𝑓𝑛𝑛−𝑘𝑘+1 −
𝑚𝑚

𝑘𝑘=2

𝑓𝑓𝑛𝑛−𝑘𝑘+2), 

𝑓𝑓𝑛𝑛+1 − 𝑓𝑓𝑛𝑛 − 𝜀𝜀(𝑚𝑚) =

=
1
𝑚𝑚
�(−1)𝑘𝑘𝐶𝐶𝑚𝑚𝑘𝑘 (𝑓𝑓𝑛𝑛−𝑘𝑘+2 −
𝑚𝑚

𝑘𝑘=2

𝑓𝑓𝑛𝑛−𝑘𝑘+1), 

𝜀𝜀(𝑚𝑚) = �(−1)𝑘𝑘−1𝐶𝐶𝑚𝑚𝑘𝑘 (𝑓𝑓𝑛𝑛−𝑘𝑘+2 −
𝑚𝑚

𝑘𝑘=1

𝑓𝑓𝑛𝑛−𝑘𝑘+1), 

𝜀𝜀(𝑚𝑚) = � (−1)𝑘𝑘−1𝐶𝐶𝑚𝑚𝑘𝑘
𝑚𝑚
𝑘𝑘=1 𝑓𝑓𝑛𝑛−𝑘𝑘+2 −

−� (−1)𝑘𝑘−1𝐶𝐶𝑚𝑚𝑘𝑘 𝑓𝑓𝑛𝑛−𝑘𝑘+1
𝑚𝑚
𝑘𝑘=1  . (5) 

З урахуванням (1) умову (5) можемо записати у 
вигляді: 

𝜀𝜀(𝑚𝑚) = 𝑓𝑓𝑛𝑛+2𝑚𝑚 − 𝑓𝑓𝑛𝑛+1𝑚𝑚  . (6) 

Співвідношення (6) є фактично необхідною умовою 
виконання (4). 

Нехай має місце умова (6). Тоді з умови (5) 
отримуємо співвідношення: 

𝑓𝑓𝑛𝑛+1 = 𝜀𝜀(𝑚𝑚) + 𝑓𝑓𝑛𝑛

+
1
𝑚𝑚
�(−1)𝑘𝑘−1𝐶𝐶𝑚𝑚𝑘𝑘 (𝑓𝑓𝑛𝑛−𝑘𝑘+1

𝑚𝑚

𝑘𝑘=2
−𝑓𝑓𝑛𝑛−𝑘𝑘+2) 

З урахуванням тотожності (5) отримуємо умову (6). 
Отже, виконання рівності (6) є необхідною та 
достатньою для виконання співвідношення (4). 

Бачимо, що похибка при знаходженні 
прогнозного значення як середнього арифметичного 
m перших членів послідовності поліноміальних 
прогнозів визначається співвідношенням (6). 
Очевидно, нас цікавитиме знаходження такої 
кількості членів послідовності поліноміадьних 
прогнозів, при якій відповідна похибка є 
мінімальною. 

Тоді, можемо запропонувати наступний 
алгоритм екстраполяцїї, який включає визначення 
оптимального значення кількості елементів ряду 
поліноміальних прогнозів, в основі якого можемо 
покласти ідею мінімізації похибки екстраполяції: 

1. Вибираємо послідовно значення 𝑚𝑚 =
1,2, … ,𝑛𝑛. 

2. Знаходимо значення 

𝑓𝑓𝑛𝑛+1𝑖𝑖 = � (−1)𝑘𝑘−1𝐶𝐶𝑖𝑖𝑘𝑘𝑓𝑓𝑛𝑛−𝑘𝑘+1
𝑖𝑖
𝑘𝑘=1 , 𝑖𝑖 = 1,𝑚𝑚������. 

3. Знаходимо прогнозне значення 
𝑓𝑓𝑛𝑛+1𝑚𝑚  в точці 𝑛𝑛 + 1 за формулою: 
𝑓𝑓𝑛𝑛+1𝑚𝑚 = 1

𝑚𝑚
� 𝑓𝑓𝑛𝑛+1𝑖𝑖𝑚𝑚

𝑖𝑖=1 . 
4. Знаходимо прогнозне значення 𝑓𝑓𝑛𝑛+2𝑚𝑚  в точці 

𝑛𝑛 + 2 за формулою:  
𝑓𝑓𝑛𝑛+2𝑚𝑚 = � (−1)𝑘𝑘−1𝐶𝐶𝑚𝑚𝑘𝑘 𝑓𝑓𝑛𝑛−𝑘𝑘+2

𝑚𝑚
𝑘𝑘=2 + 𝑚𝑚𝑓𝑓𝑛𝑛+1𝑚𝑚 . 

5. Знаходимо відхилення ∆𝑚𝑚= �𝑓𝑓𝑛𝑛+2−𝑓𝑓𝑛𝑛+1�. 
6. Знаходимо оптимальне значення 𝑚𝑚∗ з умови 

мінімізації відхилень: 
𝑚𝑚∗ = argmin

𝑚𝑚∈{1,2,..,𝑛𝑛}
∆𝑚𝑚. 

IV. ЧИСЕЛЬНІ РЕЗУЛЬТАТИ 
Розглянемо курс біткоїна в доларах США за 

період з 9 вересеня 2025 р. по 4 жовтня 2025 р.: 
111718; 111504; 114409; 115269; 115966; 115717; 
115537; 115383; 116474; 117656; 117005; 115543; 
115706; 114688; 112387; 111792; 109653; 109648; 
109587; 111908; 114443; 114193; 118786; 122226; 
122324. 

Відповідний графік зображений на Рис.1 

 
Рис.1. Графік курсу біткоїна 

Будемо послідовно виконувати кроки алгоритму. 
В таблиці 1 наведено числові результати – значення 
послідовності поліноміальних прогнозів, обрахунок 
прогнозного значення як середнього арифметичного 
6 елементів послідовності, побудову прогнозного 
значення в точці n+2. При цьому використали 
многочлени до 18 степеня включно. 

ТАБЛИЦЯ I. ВИЗНАЧЕННЯ ПРОГНОЗНИХ ЗНАЧЕНЬ  

𝑓𝑓𝑛𝑛+1 𝑓𝑓𝑛𝑛+2  степінь �𝑓𝑓𝑛𝑛+2−𝑓𝑓𝑛𝑛+1� 
122422 124564 2 2142 
119080 125586 3 6506 
116891 129950 4 13059 
120698 136503 5 15805 
138129 139249 6 1120 
179811 124564 7 -55247 
257202 68197 8 -189005 
377985 -65561 9 -443546 
536834 -320102 10 -856936 
695684 -733492 11 -1429176 
740709 -1305732 12 -2046441 
390045 -1922997 13 -2313042 

-996202 -2189598 14 -1193396 
-4784337 -1069952 15 3714385 

100000
105000
110000
115000
120000
125000

1 2 3 4 5 6 7 8 910111213141516171819202122232425

Bitcoin/USD



Моделювання, управління та інформаційні технології – 2025 

-13728892 3837829 16 17566721 
-33057292 17690165 17 50747457 
-72059265 50870901 18 1,23E+08 

 

Відоме значення курсу біткоїна 5 жовтня 2025 р., яке 
рівне 123007 USD. Прогнозне значення 123444 знай-
дено як середнє арифметичне 5 перших значень 
послідовності поліноміальних прогнозів. При цьому 
величина ∆5=1120. 

Відповідні чисельні результати для іншої кілько-
сті точок (Таблиці 2-5) наведені нижче. У верхньому 
лівому куточку кожної таблиці наведено прогнозне 
зхначення як відповідне середнє арифметичне. 

ТАБЛИЦЯ II.  

119464,33    
𝑓𝑓𝑛𝑛+1 𝑓𝑓𝑛𝑛+2  степінь �𝑓𝑓𝑛𝑛+2−𝑓𝑓𝑛𝑛+1� 
122422 116604,7 2 -5817,33 
119080 113647 3 -5433 
116891 114031,3 4 -2859,67 

∆3=2859 

ТАБЛИЦЯ III.  

119772,75    
𝑓𝑓𝑛𝑛+1 𝑓𝑓𝑛𝑛+2  степінь �𝑓𝑓𝑛𝑛+2−𝑓𝑓𝑛𝑛+1� 
122422 117221,5 2 -5200,5 
119080 114572,3 3 -4507,75 
116891 115265 4 -1626 
120698 118146,8 5 -2551,25 

∆4=2551 

ТАБЛИЦЯ IV.  

132838,5    
𝑓𝑓𝑛𝑛+1 𝑓𝑓𝑛𝑛+2  степінь �𝑓𝑓𝑛𝑛+2−𝑓𝑓𝑛𝑛+1� 
122422 143353 2 20931 
119080 153769,5 3 34689,5 
116891 167528 4 50637 
120698 183475,5 5 62777,5 
138129 195616 6 57487 
179811 190325,5 7 10514,5 

∆6=10514 

ТАБЛИЦЯ V.  

150604,71    
𝑓𝑓𝑛𝑛+1 𝑓𝑓𝑛𝑛+2  степінь �𝑓𝑓𝑛𝑛+2−𝑓𝑓𝑛𝑛+1� 
122422 178885,4 2 56463,43 
119080 207068,1 3 87988,14 
116891 238592,9 4 121701,9 
120698 272306,6 5 151608,6 
138129 302213,3 6 164084,3 
179811 314689 7 134878 
257202 285482,7 8 28280,71 

∆7=28280, 

Бачимо, що мінімальне значення відхилення, яке ви-
значене у алгоритмі, досягається саме при m=5. 

V. ВИСНОВКИ 
Таким чином, в роботі отримано низку важливих 

результатів, які становлять теоретичну основу 
методу прогнозування, який пропонується. Фактично 
отримано необхідну та достатнью умову для 
представлення прогнозного значення як середнього 
арифметичного підпослідовності поліноміальних 
прогнозів. Відповідна умова покладена в основі 
алгоритму екстраполяції, який містить підпроцедуру 
для знаходження кількості елементів послідовності 
поліноміальних прогнозів, для яких необхідно 
знаходити середнє арифметичне та будувати 
остаточний прогноз.  

Чисельні результати, які наведено у роботі, 
підтверджують ефективність алгоритму 
екстраполяції. Зауважимо, що в прикладі 
використано дані фактично випадкового процесу. 
Однак, метод дав досить пристойний результат, що 
підтверджує можливість широкого його 
застосування. 
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