
1 

Modeling, control and information technologies – 2025 

Про розв’язки матричного многочленного
 рівняння                                                над полем  

Volodymyr Prokipa 

IAPMM NAS of Ukraine,  

3b Naukova Str., L'viv, Ukraine, 79601 

e-mail:  v.prokip@gmail.com

Анотація – Розглядається матричне рівняння Си-

львестра ( ) ( ) ( ) ( ) ( )A X Y B C  +   =  , де ( ), ( )A B   і 

( )C   відомі многочленні матриці над довільним по-

лем, а ( )X   та ( )Y   невідомі матриці. Наведено умо-

ви, за яких рівняння Сильвестра сумісне для довіль-

ної матриці ( )C  . Запропоновано метод знаходження 

розв’язків рівняння Сильвестра у випадку, коли ви-

значники матриць ( )A   і ( )B   є взаємно простими та 

вказано структуру його загального розв’язку. Крім 

цього наведено умови, за яких розв’язок рівняння 

Сильвестра визначений однозначно. 

Ключові слова — кільце многочленів, матриця, 

рівняння Сильвестра, розв’язок 

I. ВСТУП 

Нехай R  – комутативне кільце з одиницею. Вве-

демо позначення: ,m nR  – множина m n  матриць 

над R , ( , )GL m R  – множина оборотних матриць в 

, ,m mR nI – одинична n n матриця і ,0m n – ну–

льова матриця вимірності m n . Якщо =R F  поле, 

то [ ]F   кільце многочленів над полем F . 

Розглянемо матричне рівняння 

+ = ,AX YB C  () 

де , , ,, ,m m n n m nA R B R C R   , а X  та Y  невідо-

мі m n  матриці над R . Рівняння (1) називають 

також матричним рівнянням Сильвестра. Якщо в 

рівнянні (1) матриця A  лівий дільник матриці C  

або матриця B  правий дільник матриці C , то рів–

няння (1) розв’язне. Зрозуміло, що в цих випадках 

задача про розв’язність рівняння (1) є тривіальною. 

Зауважимо, що рівняння (1) є одним із найвідомі–

ших матричних рівнянь у теорії матриць та її засто–

суваннях (див. [15], [17], [18]). 

Основною проблемою при дослідженні рів–

няння (1) є встановлення умов його розв’язності, 

описання структури його розв’язків та методів їх 

побудови. Якщо рівняння (1) сумісне над R , то 
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валентні. Рот (Roth, [26]) довів, що рівняння (1) над 

полем F  сумісне тоді і тільки тоді, коли матриці 

CM і 0M еквівалентні над F . Інше доведення тео–

реми Рота наведено в роботі [11]. В роботі [23] по–

казано, що цей результат не допускає узагальнення 

для випадку нескінченної розмірності матриць ,A B  

і C  у рівнянні (1). 

Існує значна кількість статтей з лінійної алгеб-

ри та теорії матриць, в яких досліджується рівняння 

Сильвестра. Багато авторів досліджували умови, за 

яких для рівняння (1) над полем, зокрема над полем 

дійсних та комплексних чисел, існують розв’язки з 

певними властивостями (див. [3], [7], [8], [20], [21], 

[28], [30]). В роботах [19], [29] наведено умови сумі-

сності рівняння (1) над тілом кватерніонів, а в ро–

ботах [9], [13], [22], [25] над комутативними кіль–

цями.  

Джонс (Jones, [14]) показав, що умова Рота су–

місності рівняння (1) є вірною у випадку, якщо R  

кільце аналітичних функцій над полем комплексних 

чисел. Густафсон (Gustafson) в роботі [12] довів, що 

рівняння (1) над комутативним кільцем R  з одини–

цею сумісне тоді і тільки тоді, коли матриці CM і 

0M еквівалентні над кільцем R .  

Умови, за яких для рівняння (1) над кільцем 

[ ]F   існують мінімальні розв’язки, тобто такі, що 

deg ( ) deg ( )X B    (або deg ( )Y   deg ( )A  ), 

наведено в роботах [2], [4], [5], [10], [24], [27]. 

Методи побудови розв’язків рівняння (1) при тих чи 

інших обмеженнях запропоновано в роботах [1–3], 

[6], [16], [25].  

В даній статті розглядається матричне ріняння 

Сильвестра ( ) ( ) ( ) ( ) ( )A X Y B C  +   =  , де ( ),A   

( )B   і ( )C   відомі неособливі многочленні матри-

ці над довільним полем F , а ( )X   та ( )Y   невідо-

мі многочленні матриці над F . Наведено умови, за 

яких рівняння Сильвестра сумісне. Запропоновано 

метод знаходження розв’язків рівняння Сильвестра 

у випадку, коли визначники матриць ( )A   і ( )B   є 

взаємно простими та вказано структуру його зага-

льного розв’язку. Крім цього, наведено умови, за 

яких розв’язок рівняння Сильвестра визначений 

однозначно. Зауважимо, що окремі з наведених ре-

зультатів є вірними для матричного рівняння Силь-

вестра над областями Безу. 

( ) ( ) ( )B( ) C( )A X Y  +   = 
https://doi.org/10.31713/MCIT.2025.101 
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II. ОСНОВНІ РЕЗУЛЬТАТИ

Надалі [ ]R F =  – кільце многочленів над до-

вільним полем F . Під записом ( ( ), ( )) ( )a b d  = 

будемо розуміти, що ( ) [ ]d F   є найбільшим

спільним дільником многочленів ( ), ( ) [ ]a b F    . 

Відомо, що для многочленів ( ), ( ) [ ]a b F     існує 

єдина пара многочленів ( ), ( ) [ ]p q F     таких, що 

( ) ( ) ( ) ( )a p b q =   +   і deg ( ) deg ( )q b   . 

Розглянемо неоднорідне діофантове рівняння 

( ) ( ) ( ) ( ) ( ),a x b y c  +   =   () 

де ( ), ( ), ( ) [ ]a b c F     відомі многочлени, а ( )x 

та ( )y   невідомі многочлени над .F  Відомо, що 

рівняння (2) є розв’язним тоді й тільки тоді, коли 

найбільший спільний дільник ( )a   і ( )b   є діль–

ником ( )c  , тобто ( ), ( ) ( )a b c  |( ) . Нехай пара 

многочленів 0 0( ), ( ) [ ]x y F    – розв’язок рів–

няння (2). Якщо ж для цього розв’язку виконується 

одна з умов:  

0deg ( ) deg ( )x b   або 0deg ( ) deg ( )y a   ,  

то такий розв’язок називають мінімальним. Зазна-

чимо, якщо рівняння (2) є розв’язним, то серед його 

розв’язків існують мінімальні (див. [2]). 

Твердження 1. Нехай ( ), ( ), ( ) [ ]a b c F     . 

Нехай, далі, deg ( ) 1a p =   і deg ( ) 1b q =  . 

Рівняння (2) має єдиний мінімальний розв’язок 

0 0( ), ( )x y  такий, що 0deg ( ) deg ( )y a   , тоді 

й тільки тоді, коли многочлени ( )a   і ( )b   є вза–

ємно простими.  

Доведення. Необхідність доведена в [2]. 

Достатність. Нехай 0 ( ),x  0 ( ) [ ]y F   – 

єдиний мінімальний розв’язок рівняння (2), тобто 

0 0( ) ( ) ( ) ( ) ( )    + =a x b y c , 0deg ( ) deg ( )x b   . 

Припустимо, що ( ( ), ( )) ( )  = a b d const . Отже, 

1( ) ( ) ( )  =a d a ,
1( ) ( ) ( )  =b d b ,

1( ) ( ) ( )  =c d c

і 
1 0 1 0 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )       + =a d x b d y c d .  

Так як 0 10 deg ( ) deg ( ) deg ( ),x b b  −     

то пара многочленів 0 1 0 1( ) ( ), ( ) ( )x b y a −   +  є 

мінімальним розв’язком рівняння (2), тобто 

1 0 1 1 0 1

1

( ) ( )( ( ) ( )) ( ) ( )( ( ) ( ))

( ) ( ).

       

 

− + + =a d x b b d y a

c d

Отже, якщо многочлени ( )a   і ( )b   не є взає–

мно простими, то рівняння (2) має принаймі два 

мінімальних розв’язки. Проте це не узгоджується із 

припущенням про те, що мінімальний розв’язок 

рівняння ( ) ( ) ( ) ( ) ( )    + =a x b y c  єдиний при 

умові ( )( ), ( ) ( )  = a b d const .

Таким чином доведено, що мінімальний роз–

в’язок рівняння ( ) ( ) ( ) ( ) ( )    + =a x b y c  єдиний 

тоді і тільки тоді, коли ( )( ), ( ) 1  =a b . Твердження 

доведено. 

Аналогічно доводиться наступне твердження. 

Твердження 1а. Нехай ( ), ( ), ( ) [ ]a b c F     . 

Нехай, далі, deg ( ) 1a p =   і deg ( ) 1b q =  . 

Рівняння (2) має єдиний мінімальний розв’язок 

0 0( ), ( )x y  такий, що 0deg ( ) deg ( )x b   , тоді 

й тільки тоді, коли многочлени ( )a   і ( )b   є вза–

ємно простими.  

Зауважимо, що доведення достатності у тверд–

женні 1 є альтернативним до його доведення у 

тведженні 1 в роботі [2].  

Надалі будемо розглядати матричне рівняння 

( ) ( ) ( ) ( ) ( ),A X Y B C  +   =   () 

де ,( ) [ ]m mA F    та ,( ) [ ]n nB F   – неособливі 

матриці і ,( ) [ ]m nC F   . При заданих обмеженнях

для рівняння (3) наведемо умови його сумісності та 

опишемо структуру його розв’язків.  

Твердження 2. Нехай в рівнянні (3) матриці 

( )A   i ( )B   неособливі. Нехай, далі, має місце 

(det ( ),det ( )) ( )A B d  =  . Якщо рівняння (3) су-

місне, то 

* *( ) ( ) ( ) ( ) ( ),A C B d Q   =    () 

де * *( ) ( )A i B   приєднані матриці до матриць 

( ) ( )A i B   відповідно.  

Доведення. Нехай рівняння (3) сумісне, тобто 

0 0( ) ( ) ( ) ( ) ( ).A X Y B C  +   =   Звідси дістаємо  

* *
0 0

* *

det ( ) ( ) ( ) ( ) ( )det ( )

( ) ( ) ( ).

A X B A Y B

A C B

   +    =

  

( ) (det ( ),det ( ))d A B =  Звідси отримуємо, що 
 
                                              є 

дільником елементів матриці * *( ) ( ) ( ),A C B  

тобто * *( ) ( ) ( ) ( ) ( ).A C B d Q   =    Твердження 

доведено. 

Нижче опишемо клас рівнянь (3) над [ ]F  , для 

яких умова (4) твердження 2 буде достатньою.   

Теорема 1. Нехай для неособливих матриць 

,( ) [ ]m mA F    і ,( ) [ ]n nB F    виконується 

(det ( ),det ( )) ( )A B d  =  . Тоді для довільної ма-

триці ,( ) [ ]m nC F   рівняння

( ) ( ) ( ) ( ) ( ) ( )A X Y B d C  +   =    () 

сумісне над [ ]F  .  

Доведення. Покладемо det ( ) ( )A a =   і 

det ( ) ( ).B b =   Для многочленів ( )a   і ( )b   

існують многочлени ( ), ( ) [ ]u v F     такі, що 
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( ) ( ) ( ) ( ) ( ).a u b v d  +   =   Отже, для довільної 

матриці ,( ) [ ]m nC F    отримуємо  

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ).

a u C v C b

d C

   +    =

 
                   (6) 

Рівність (6) перепишемо у вигляді  

( ) ( )* *
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ).

A A C u C B v B

d C

    +    

=  
      (7) 

Тепер із рівності (7) дістаємо, що для матриць  
*

0 ,( ) ( ) ( ) ( ) [ ]m nX u A C F =      , 

*
0 ,( ) ( ) ( ) ( ) [ ]m nY v C B F =       

виконується 0 0( ) ( ) ( ) ( ) ( ) ( ).A X Y B d C  +   =     

Отже, рівняння (5) сумісне. Матриці 0 ( )X   і 0 ( )Y   

будемо називати частинним розв'язком рівняння (5). 

Тепер неважко переконатись в тому, що для 

довільної матриці ,( ) [ ]m nG F    пара матриць  

*
0 ,( ) ( ) ( ) ( ) ( ) [ ]G m nX X b A G F =  +      , 

*
0 ,( ) ( ) ( ) ( ) ( ) [ ]G m nY Y a G B F =  −       

є загальним розв’язком рівняння (5). Лему доведе–

но. 

Наслідок 1. Нехай матриці ,( ) [ ]m mA F    і 

,( ) [ ]n nB F    – неособливі і ,( ) [ ].m nC F    Не–

хай, далі, ( )det ( ),det ( ) ( ).A B d  =   Якщо 

1( ) ( ) ( )C d C =   , то матричне рівняння  

( ) ( ) ( ) ( ) ( )A X Y B C  +   =   

сумісне.  

Якщо ,( ) [ ]m mA F    і ,( ) [ ]n nB F    неосо–

бливі із взаємно простими визначниками, тобто 

( )det ( ),det ( ) 1A B  = , то на підставі наслідку 1 

отримуємо, що рівняння (3) сумісне для довільної 

матриці ,( ) [ ]m nC F   . З огляду на твердження 1, 

теорему 1 та наслідок 1 отримуємо.  

Наслідок 2. Нехай визначники неособливих 

матриць 
,( ) [ ]m mA F    і 

,( ) [ ]n nB F    взаємно 

прості, тобто ( )det ( ),det ( ) 1.A B  =  Нехай, 

далі, ( ), ( ) [ ]u v F     такі, що  

( )(det ( )) ( )(det ( )) 1u A v B  +   =  

Якщо deg ( ) degdet ( )u B   , то для довільної 

матриці ,( ) [ ]m nC F    частинний розв’язок  

*
0 ( ) ( ) ( ) ( )X u A C =    , 

*
0( ) ( ) ( ) ( )Y v C B =     

рівняння   +   = ( ) ( ) ( ) ( ) ( )A X Y B C  многочленом 

( )u   визначається однозначно.  

Наслідок 3. Нехай визначники неособливих 

матриць ,( ) [ ]m mA F    і ,( ) [ ]n nB F    взаємно 

прості, тобто ( )det ( ),det ( ) 1.A B  =  Нехай, 

далі, ( ), ( ) [ ]u v F     такі, що  

( )(det ( )) ( )(det ( )) 1.u A v B  +   =  

Якщо deg ( ) degdet ( )v A   , то для довільної 

матриці ,( ) [ ]m nC F    частинний розв’язок 

*
0( ) ( ) ( ) ( ),X u A C =     

*
0( ) ( ) ( ) ( )Y v C B =     

рівняння   +   = ( ) ( ) ( ) ( ) ( )A X Y B C  многочлена-

ми ( )u   і ( )v   визначається однозначно.  

 Наведений вище результат проілюструємо на 

прикладі. Нехай F  Q  – поле раціональних чисел. 

 Приклад. Розглянемо неособливі многочленні 

матриці 
2 3 2

( )
2 1

A
 


 +

=  
− 

 і 
2

1 1
( )

4 5
B 

 

− 
=  

+ 
 над 

полем Q  із визначниками 2det ( ) 3 4A   = + +  і 

2det ( ) 4 5B   = + +  відповідно і 
22 4

( )
1 2 3

C
  




 + +
=  

+ 
.  

 Для det ( )A   і det ( )B   існує єдина пара многоч-

ленів ( ) 0,5 1,5u  = +  і ( ) 0,5 1v  = − −  таких, що 

( )(det ( )) ( )(det ( )) 1u A v B  +   =  і deg ( ) degdet ( )u B   . 

Тоді пара матриць 

*
0

2 3 2

3 2 4 3 2

( ) ( ) ( ) ( )

( +4 +3)/2 ( +5 +3 -9)/2
,

( +5 +9 +9)/2 (2 +14 +39 +60 +45)/2

X u A C =    =

     
 

       

 

*
0

4 3 2 3 2

3 2 2

( ) ( ) ( ) ( )

(3 +25 +58 +40 )/2 (- -7 -12 -4)/2

(7 +36 +59 +30)/2 - -4 -4

Y v C B =    =

       
 

     

 

єдиний частинний розв’язок заданого рівняння. 

Тепер за частинним розв’язком заданого рів-

няння легко побудувати його загальний розв’язок.  

Враховуючи твердження 1 і 1а встановимо 

умови існування “мінімальних” розв’язків матрич–

ного рівняння (3). Наступні теореми узгальнюють 

основні результати робіт [4], [10] і [24]. 

Теорема 2. Нехай матриці ,( ) [ ]m mA F    та 

,( ) [ ]n nB F    неособливі і ,( ) [ ]m nC F   . Нехай, 

далі, ( )B   лівоеквівалентна регулярній многочлен- 

ній матриці, тобто існує зворотна матриця 

( ) ( , [ ])W GL n F   така, що  

1

( ) ( ) , deg   .( )
r

r r i
n

i

W B I D де r B−

=

  =  +     

Рівняння   +   = ( ) ( ) ( ) ( ) ( )A X Y B C  має єдиний 

розв'язок  0 0{ ( ,) }  ( )X Y  такий, що 0deg ( )X r   

тоді і тільки тоді, коли визначники матриць ( )A   

і ( )B   взаємно прості. 

Теорема 3. Нехай матриці ,( ) [ ]m mA F    та 

,( ) [ ]n nB F    неособливі і ,( ) [ ]m nC F   . Нехай, 

далі, ( )A   правоеквівалентна регулярній многоч-

ленній матриці, тобто існує зворотна матриця 

( ) ( , [ ])W GL m F   така, що 

1

( ) ( )
r

r r i
n

i

A W I D −

=

  =  +  , де deg ( )r B  . 

Рівняння   +   = ( ) ( ) ( ) ( ) ( )A X Y B C  має єдиний 

розв'язок  0 0{ ( ,) }  ( )X Y  такий, що така, що 

0deg ( )Y r   тоді і тільки тоді, коли визначники 

матриць ( )A   і ( )B   взаємно прості.  
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З огляду на результати Розділу 2 та роботи [2], 

[4], [10] і [24] зазначимо, що єдині мінімальні роз–

в’язки матричного рівняння (3) існують лише у ви-

падку, коли неособливі матриці ( )A   і ( )B   мають 

взаємно прості визначники. Такі розв’язки розділи-

мо на три класи: 

1) Мінімальні розв’язки рівняння (3), які визна–

чаються принаймі однією регулярною матрицею 

( )A   або ( )B  , або одніє з неособливих матриць 

( )A   або ( )B  , яка односторонніми перетворен–

нями еквівалентності приводиться до регулярної 

многочленної матриці; 

2) Мінімальні розв’язки рівняння (3), які визна–

чаються формою Ерміта однієї з неособливих мат–

риць ( )A   або ( )B  ;  

3) Мінімальні розв’язків рівняння (3), які визна-

чаються єдиним мінімальним розв’язком рівняння 

( )(det ( )) ( )(det ( )) 1u A v B  +   = .  
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