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Анотація - У роботі проведено порівняльний
аналіз трьох сучасних методів трекінгу, що 
застосовуються у системах комп’ютерного зору для 
відстеження об’єктів у динамічних умовах з метою 
прогнозування траєкторій рухомих об’єктів, що є 
ключовим елементом інтелектуального 
відеоспостереження з використанням безпілотних 
літальних апаратів. Розглянуто їх ефективність за 
різних сценаріїв зйомки та проаналізовано можливі 
напрями підвищення точності та надійності 
відстеження, зокрема для завдань прогнозування 
траєкторій. Отримані результати можуть бути 
використані для вдосконалення систем 
відеоспостереження на базі дронів у задачах 
моніторингу та безпеки. 
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I. ВСТУП
Безпілотні літальні апарати (БПЛА) дедалі 

активніше використовуються для розв’язання 
широкого спектра задач — від контролю 
дорожнього руху та пошуково-рятувальних 
операцій до охорони стратегічних об’єктів та 
державних кордонів. Ефективність таких систем 
значною мірою залежить від здатності не лише 
виявляти рухомі об’єкти, а й прогнозувати їх 
подальший рух. 

Прогнозування траєкторій дає змогу підвищити 
точність трекінгу навіть у складних умовах, коли 
об’єкт тимчасово зникає з поля зору камери, змінює 
траєкторію руху або перебуває серед перешкод. Це 
створює підґрунтя для розвитку більш автономних 
систем відеоспостереження та їх практичного 
застосування у сфері безпеки й оборони. 

II. ОГЛЯД ДОСЛІДЖЕНЬ
Класичні методи трекінгу рухомих об’єктів 

тривалий час залишалися основою систем 
відеоспостереження. До них належать фільтр 
Калмана, методи асоціації детекцій та алгоритми 
оптичного потоку. Вони забезпечують достатню 
швидкодію та ефективність у випадках із невеликою 
кількістю об’єктів і відносно передбачуваним 
рухом. Проте за умов динамічних середовищ, коли 

об’єкти перекриваються або різко змінюють 
траєкторію, точність таких методів суттєво 
знижується. 

Розвиток комп’ютерного зору та глибинного 
навчання відкрив нові можливості для підвищення 
якості трекінгу. Сучасні системи поєднують 
детектори об’єктів, такі як YOLOv8, з алгоритмами 
асоціації траєкторій (DeepSORT, ByteTrack), що 
дозволяє ефективніше працювати з великими 
потоками даних та складними сценами. На відміну 
від класичних рішень, ці методи здатні враховувати 
просторово-часові залежності та зменшувати 
кількість помилок при втраті об’єкта з поля зору.[1] 

Окремим напрямом досліджень є прогнозування 
майбутніх положень об’єктів. Тут застосовуються 
як нейронні мережі (наприклад, LSTM), так і 
комбіновані алгоритми, що поєднують класичні 
підходи з глибинними моделями. Це дозволяє 
системам не лише відслідковувати поточне 
положення, а й передбачати можливі траєкторії 
руху, що особливо важливо для використання 
дронів у завданнях моніторингу та безпеки.[2] 

Переваги сучасних методів трекінгу й 
прогнозування включають: 

• стійкість до часткових перекриттів та
втрати об’єкта з кадру; 

• здатність працювати у складних і
динамічних середовищах; 

• можливість інтеграції з детекторами
об’єктів нового покоління; 

• підвищення точності завдяки урахуванню
історії руху. 

Таким чином, сучасні дослідження свідчать про 
значний прогрес у напрямі трекінгу та 
прогнозування, однак жоден із підходів не є 
універсальним. Це визначає необхідність 
порівняння кількох методів і пошуку шляхів їхнього 
вдосконалення у практичних системах 
відеоспостереження з використанням дронів. 

III. ОПИС ДОСЛІДЖЕННЯ
Моделювання системи трекінгу проводилося у 

середовищі PyCharm на ноутбуці Dell, 
використовуючи відеофайли формату mp4. Метою 
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дослідження було порівняння трьох сучасних 
алгоритмів трекінгу об’єктів у відео: DeepSORT, 
ByteTrack та StrongSORT, у поєднанні з моделлю 
детекції об’єктів YOLOv8. 
       1. DeepSORT 

DeepSORT є удосконаленою версією класичного 
SORT, яка додає використання ознак зовнішнього 
вигляду об’єктів для зменшення помилок асоціації. 
[3]. Принцип роботи: 

• Детекція об’єктів: YOLOv8 генерує 
прямокутники об’єктів у кожному кадрі. 

• Асоціація об’єктів: Кожен детектований 
об’єкт порівнюється з існуючими треками за 
допомогою Mahalanobis distance та ознак 
зовнішнього вигляду. 

• Оновлення треків: Використовується 
Kalman Filter для передбачення положення об’єкта у 
наступному кадрі. 

Математично, оновлення стану об’єкта xk  
здійснюється через рівняння Калмана: 
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де xk  -  вектор стану, zk -  вимірювання, F -  матриця 
переходу, H -  матриця спостереження, wk,vk - шуми 
процесу та вимірювання. 

2.ByteTrack  
          ByteTrack розширює підхід DeepSORT, 
враховуючи детекції з низькою впевненістю для 
покращення безперервності треків. 
Принцип роботи: 

• Детекція об’єктів: YOLOv8 знаходить об’єкти 
з високою та низькою впевненістю. 

• Двоетапна асоціація: Спочатку асоціюються 
об’єкти з високою впевненістю, потім — з низькою, 
що дозволяє підтримувати треки при часткових 
перекриттях або тимчасовій втраті об’єктів. 

• Оновлення треків: Використовується Kalman 
Filter для прогнозування та корекції положення. 

Алгоритм зменшує кількість розривів треків і 
підвищує стійкість при хаотичному русі об’єктів. 

3.StrongSORT  
        StrongSORT є подальшим розвитком 
DeepSORT і ByteTrack, інтегруючи вдосконалені 
методи асоціації та фільтрації треків для мінімізації 
помилок. [4] 
Принцип роботи: 

• Використовує потужні ознаки зовнішнього 
вигляду та методи відсікання слабких треків для 
уникнення помилок ID Switches. 

• Асоціація об’єктів проводиться через 
комбінацію IOU (Intersection over Union) та 
відстаней у просторі ознак. 

• Підтримує передбачення траєкторій та 
корекцію позицій через Kalman Filter, як у 
попередніх алгоритмах. 

StrongSORT забезпечує високу стабільність 
трекінгу навіть у складних умовах з перекриттями та 
великою кількістю об’єктів у кадрі. 

IV. РЕЗУЛЬТАТИ ДОСЛІДЖЕННЯ 
DeepSORT + YOLOv8 показав прийнятну 

точність, але помітну кількість помилок асоціації 
при великій кількості об’єктів. Точність MOTA 

становила 73–80%, кількість ID Switches була 
середньою (≈ 400–700), швидкодія — 25–30 FPS. 
Алгоритм добре працює у помірно складних сценах, 
проте при високій щільності рухомих об’єктів може 
виникати багато розривів траєкторій. 

ByteTrack + YOLOv8 продемонстрував вищу 
точність і кращу стабільність завдяки двоетапній 
асоціації та використанню низьковпевнених 
детекцій. MOTA склала 80–84%, кількість ID 
Switches — низька (≈ 150–300), швидкодія — 28–32 
FPS. Алгоритм відзначається високою стійкістю до 
тимчасової втрати об’єктів і хаотичного руху. 

StrongSORT + YOLOv8 показав найкращі 
результати з точки зору точності та мінімізації 
помилок. MOTA — 82–86%, кількість ID Switches — 
дуже низька (≈ 100–200), швидкодія — 22–27 FPS. 
Цей метод забезпечує максимально безперервне 
відстеження навіть у складних умовах із високою 
щільністю об’єктів і частковим перекриттям. 

Таблиця I. Порівняння алгоритмів трекінгу 

Алгоритм MOTA 
(%) ID Switches FPS 

DeepSORT + 
YOLOv8 73–80 середній ≈ 400–700 25–30 

ByteTrack + YOLOv8 80–84 низький ≈ 150–300 28–32 

StrongSORT + 
YOLOv8 82–86 дуже низький ≈ 100–

200 22–27 

 
ВИСНОВКИ 

Отримані результати показали, що використання 
удосконалених алгоритмів трекінгу, які враховують 
ознаки зовнішнього вигляду та детекції з низьким 
рівнем впевненості, підвищує точність і стабільність 
відстеження. Таким чином, StrongSORT + YOLOv8 
демонструє найкращий баланс між точністю і 
мінімізацією помилок, тоді як DeepSORT підходить 
для середніх навантажень із більшим FPS, а 
ByteTrack — для задач із хаотичним рухом і 
високою щільністю об’єктів. 

Для подальшого підвищення ефективності 
рекомендується: 

• оптимізація StrongSORT для підвищення 
швидкодії без втрати точності; 

• підвищення стійкості алгоритмів до шуму, змін 
освітлення та перешкод; 

• інтеграція прогнозування траєкторій для більш 
автономного контролю рухомих об’єктів. 
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