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Abstract—Localization, the task of determining position
in an environment, is fundamental for robotics, navigation,
and tracking [1], [2]. This paper reviews modern approaches
with emphasis on mathematical and computational
modeling. We compare geometric methods [6], dead-
reckoning with sensor fusion [3], [4], graph-based
optimization (SLAM) [11], [12], and deep learning
techniques [5], [8]. A comparative table highlights their
accuracy, robustness, and main trade-offs. The review
indicates that multi-sensor fusion and robust estimation
improve reliability [3], [4], while deep learning adds potential
but requires large datasets and careful design [5].
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1. INTRODUCTION

Localization is the process of estimating the position
and orientation of an object or agent within a known
reference frame. It underpins many applications in
autonomous robotics, vehicle navigation, wireless sensor
networks, and augmented reality [1], [2], [7].
Autonomous systems must continuously localize to
navigate safely, and in GPS-denied environments (e.g.,
indoors or urban canyons) alternative methods are
required. Even outdoors, sole reliance on GNSS may be
insufficient for safety-critical tasks demanding higher
accuracy and reliability [1], [2].

Modern localization approaches can be broadly
classified into geometry-based, sensor fusion (Bayesian
filter-based), optimization-based (including SLAM), and
learning-based methods [1], [5]. Geometry-based
techniques (e.g., multilateration, triangulation) compute
positions from reference anchors [6]. Sensor fusion
treats localization as state estimation, combining
predictions and noisy measurements in probabilistic
frameworks such as Kalman or particle filters [3], [4].
Optimization and SLAM formulate localization as a
graph or least-squares problem, solving for trajectories
or maps that best explain sensor data [11], [12]. More
recently, data-driven approaches with machine learning
and deep neural networks aim to learn location directly
from inputs or to enhance classical pipelines [9], [10].

Each class of methods has trade-offs in accuracy,
computational cost, and robustness to uncertainties [1],

[2]. In this paper we review the principal techniques,
analyze their modeling aspects, and summarize
performance in a comparative table, with emphasis on
how they achieve accuracy and cope with noise, drift,
and environmental changes [1], [5].

II. METHODS AND ANALYSIS

A. Geometric Localization Techniques

Geometry-based localization relies on anchors and
measured distances or angles. Trilateration and
triangulation determine position from three or more
reference points [6]. GNSS and UWB use time-of-flight
ranging, often solved with least-squares. Under ideal
conditions, UWB can achieve centimeter-level accuracy,
while BLE fingerprinting in hospitals reached ~12 cm
[2], [7]. However, these methods depend on line-of-sight
and precise signals; multipath and NLOS significantly
reduce robustness [2]. They also require fixed
infrastructure, which may not always be available.
Geometric methods thus are often combined with other
techniques for reliability.

Dead-reckoning updates position by integrating
odometry or IMU measurements. It is self-contained and
precise short-term but suffers from drift as small errors
accumulate. Hence it is typically fused with landmarks,
GNSS, or wireless updates. Hybrid systems combining
inertial sensors with Wi-Fi or UWB outperform
standalone inertial navigation [3], [7].

B. Sensor Fusion and Bayesian Filters

Sensor fusion frames localization as a state estimation
problem under uncertainty. The Bayesian filter family
recursively updates a probability distribution of the state
using motion models and observations. The most
common example is the Kalman Filter (KF), which
maintains a Gaussian estimate through prediction and
correction. Under linear-Gaussian assumptions, KF is
provably optimal [3]. Variants such as EKF and UKF
extend it to non-linear dynamics and are widely used in
GPS—inertial navigation and mobile robotics [3].

The strength of KF lies in multi-sensor fusion, where
complementary modalities improve accuracy. Fusing
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UWB ranges with odometry yields precise, stable
trajectories and clearly outperforms UWB-only solutions
[3], [4]. Anchors provide global reference, odometry
smooths motion, and fusion corrects drift while filtering
noise. Such systems remain efficient enough for
embedded platforms [3], [4].

KF, however, assumes unimodal Gaussian errors and
is sensitive to outliers [3]. Adaptive Kalman variants
address this by adjusting covariances online [1]. For
more general cases, Particle Filters (PF) represent the
belief as a set of weighted samples, handling non-linear
and multi-modal distributions [3]. PFs have been applied
to indoor localization using Wi-Fi and landmarks,
offering robustness to ambiguities like the “kidnapped
robot” problem. Their drawback is computation: large
particle sets are required to avoid degeneracy, especially
in high-dimensional spaces [3]. Rao—Blackwellized and
resampling strategies reduce this burden, making PFs
highly robust but heavier than KF-based methods.

C. Optimization-Based Localization and
SLAM

Optimization-based methods accumulate constraints
over time and solve for the trajectory (and sometimes the
map) that best fits all observations. Graph-Based SLAM
is the prototypical example: robot poses are nodes, and
sensor observations form edges. The problem is then
solved as a least-squares optimization [11]. Modern
sparse nonlinear solvers achieve high accuracy,
especially by leveraging loop closures to eliminate
accumulated drift. For instance, a robot driving a loop
can redistribute error and align the start and end poses,
producing a consistent trajectory [11].

Visual SLAM extends this idea with bundle
adjustment, jointly optimizing camera poses and 3D
landmarks, and achieving state-of-the-art accuracy in
feature-based localization [11]. These methods naturally
integrate long-term data and heterogeneous sensor
constraints, while incremental smoothing (e.g., iISAM)
enables near real-time operation [11].

A key challenge is robustness to incorrect loop
closures, which can distort the solution. Robust cost
functions, switchable constraints, and adaptive robust
losses have been proposed to down-weight or reject
outliers [4]. These approaches significantly improve
resilience without heavy parameter tuning. Although
large-scale graphs with thousands of nodes can be
computationally demanding, sparsity and incremental
solvers usually keep them tractable.

In summary, optimization-based localization offers
high global accuracy and robustness when enhanced
with proper outlier handling. In practice, these methods
are often combined with local filters: the front-end tracks
motion, while the back-end periodically optimizes
constraints to correct drift [4], [11].

D.  Learning-Based and Data-Driven Methods

Recent years have seen rapid growth in machine
learning, especially deep learning, for localization.
These approaches learn mappings from sensor inputs to

positions instead of relying solely on physical models. In
indoor contexts, fingerprinting with Wi-Fi RSSI or
magnetic data is often combined with neural networks to
improve accuracy [2], [7]. For visual localization,
convolutional networks can directly regress camera pose
(e.g., PoseNet) or support SLAM by extracting robust
features [5], [8], [9], [10], [12].

The appeal of learning methods lies in capturing non-
linear, high-dimensional patterns that classical models
cannot. Deep visual networks, for instance, have
achieved centimeter-level accuracy in controlled
environments [5]. Hybrid IoT systems combining BLE
beacons with ML have demonstrated decimeter-level
tracking for healthcare and asset monitoring [7]. Once
trained, such models can run efficiently, providing real-
time estimates [5].

Challenges remain: deep models are data-hungry,
environment-specific, and often fail to generalize across
domains [5]. They also lack explicit uncertainty
modeling and may be sensitive to adversarial conditions
such as motion blur or missing signals [5]. This can make
purely learned systems brittle.

A promising trend is hybridization-using deep
learning within classical frameworks. Neural networks
can predict observation reliability, correct sensor biases,
or provide features such as LoFTR, SuperGlue, and
NetVLAD that feed into geometric or graph-based back-
ends [8], [9], [10], [12]. This leverages the adaptability
of learning with the stability of model-based methods.

TABLE I. COMPARISON OF TOP LOCALIZATION METHODS

Method Principle Pros Cons
Distances/anales o Absolute position; Needs
Geometry = simple; high infrastructure; poor

anchors

accuracy in LOS

in NLOS

Dead-Reckoning

Motion integration
(IMU, odometry)

Self-contained;
smooth short-term

Drift grows; not
reliable long-term

Kalman Filter

Linear-Gaussian
fusion

Efficient; real-time;
widely used

Sensitive to model
errors, outliers

Particle Filter

Sampling-based
Bayes

Handles non-linear
& multi-modal;
robust

Computationally
heavy

Graph-SLAM

Pose graph
optimization

Global consistency;
loop closure
correction

Needs good
associations;
heavier compute

Neural networks on

Learns complex

Data-hungry; poor

Deep Learning patterns; fast

sensor data s
inference

generalization

III. RESULTS AND DISCUSSION

Each localization approach offers a different balance
between accuracy, robustness, and practicality. In
practice, designers often combine multiple methods to
exploit complementary strengths. A  common
architecture is to use a Kalman or Particle Filter as the
core state estimator, fed by odometry, IMU, and absolute
inputs (GPS, UWB, vision). The filter enables real-time
fusion, while a graph-based back-end periodically
corrects drift through loop closures. Deep learning
modules can enhance robustness by recognizing places
or filtering unreliable measurements [4].

From the comparative analysis (Table 1), some clear
trends emerge. Geometry-based multilateration provides
strong accuracy when assumptions hold-GNSS outdoors
or UWB indoors-but suffers indoors from multipath and
NLOS [2], [7]. Such systems require infrastructure and
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are fragile to environmental changes unless paired with
error detection or down-weighting unreliable signals.
Dead-reckoning alone is not sustainable due to drift, yet
it is indispensable for continuity and redundancy,
typically corrected with periodic external fixes [3], [7].

Bayesian filters (KF, EKF, UKF, PF) are highly
effective for robust fusion. They smooth random noise
and can detect faults in real time [3]. Adaptive filters
adjust parameters on the fly, while PFs maintain multiple
hypotheses, offering robustness in ambiguous
environments at higher computational cost [3].

Graph-SLAM and optimization methods have
become the standard in high-precision mapping,
eliminating drift through loop closures and global
optimization [11]. Robust formulations-switchable
constraints, robust kernels, consensus methods-mitigate
false associations [4]. These systems often complement
filters: the front-end tracks locally, while the back-end
refines trajectories at a slower rate.

Learning-based  approaches are increasingly
impactful, particularly for visual re-localization and
indoor fingerprinting. Neural networks outperform
classical interpolation for Wi-Fi or BLE signals [2], [7],
and deep visual models achieve viewpoint- and lighting-
invariant recognition [5], [8], [9], [10], [12]. However,
they remain limited by data requirements and
generalization challenges. Research into domain
randomization and uncertainty-aware deep networks
seeks to improve robustness [5].

Overall, achieving both accuracy and robustness
requires hybridization. Systems that combine multiple
modalities-geometry for absolute scale, dead-reckoning
for continuity, Bayesian filters for fusion, optimization
for global consistency, and deep learning for perception-
consistently show the highest resilience [1], [3], [10].
Table 1 summarizes these trade-offs and can guide
method selection depending on computational resources,
environment, and safety requirements.

IV. CONCLUSION

Reliable localization is inherently multi-faceted and
requires combining methods. Geometric approaches
provide absolute positioning but degrade under
multipath or NLOS conditions [2]. Probabilistic filters
such as Kalman and Particle Filters enable real-time
fusion and noise handling, forming the backbone of
many robust systems [3]. Graph-based optimization and
SLAM refine accuracy over time through loop closures
and global consistency [4], [11]. Deep learning adds
adaptability by capturing complex patterns, though it
remains data-hungry and environment-specific [5].

Comparative analysis highlights a clear trend: hybrid
frameworks achieve the best outcomes by integrating
multiple modalities and employing robust modeling [1],

[3]. For example, autonomous vehicles fuse GNSS,
lidar-SLAM, vision, and IMU to achieve centimeter-
level accuracy, while indoor robotics may combine
vision-SLAM with UWB anchors for global reference.
Recent work also emphasizes uncertainty quantification
and fault detection as key for trustworthy localization

[].

In practice, no single method is universally optimal-
the choice depends on application context and accuracy
requirements. The most promising direction is tighter
integration of learning with model-based approaches,
leading to systems that are both precise and resilient in
diverse conditions [5]. Such advances will be critical as
autonomous platforms scale into complex real-world
environments.
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