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Abstract—Localization, the task of determining position 
in an environment, is fundamental for robotics, navigation, 
and tracking [1], [2]. This paper reviews modern approaches 
with emphasis on mathematical and computational 
modeling. We compare geometric methods [6], dead-
reckoning with sensor fusion [3], [4], graph-based 
optimization (SLAM) [11], [12], and deep learning 
techniques [5], [8]. A comparative table highlights their 
accuracy, robustness, and main trade-offs. The review 
indicates that multi-sensor fusion and robust estimation 
improve reliability [3], [4], while deep learning adds potential 
but requires large datasets and careful design [5]. 
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I.  INTRODUCTION 
Localization is the process of estimating the position 

and orientation of an object or agent within a known 
reference frame. It underpins many applications in 
autonomous robotics, vehicle navigation, wireless sensor 
networks, and augmented reality [1], [2], [7]. 
Autonomous systems must continuously localize to 
navigate safely, and in GPS-denied environments (e.g., 
indoors or urban canyons) alternative methods are 
required. Even outdoors, sole reliance on GNSS may be 
insufficient for safety-critical tasks demanding higher 
accuracy and reliability [1], [2]. 

Modern localization approaches can be broadly 
classified into geometry-based, sensor fusion (Bayesian 
filter-based), optimization-based (including SLAM), and 
learning-based methods [1], [5]. Geometry-based 
techniques (e.g., multilateration, triangulation) compute 
positions from reference anchors [6]. Sensor fusion 
treats localization as state estimation, combining 
predictions and noisy measurements in probabilistic 
frameworks such as Kalman or particle filters [3], [4]. 
Optimization and SLAM formulate localization as a 
graph or least-squares problem, solving for trajectories 
or maps that best explain sensor data [11], [12]. More 
recently, data-driven approaches with machine learning 
and deep neural networks aim to learn location directly 
from inputs or to enhance classical pipelines [9], [10]. 

Each class of methods has trade-offs in accuracy, 
computational cost, and robustness to uncertainties [1], 

[2]. In this paper we review the principal techniques, 
analyze their modeling aspects, and summarize 
performance in a comparative table, with emphasis on 
how they achieve accuracy and cope with noise, drift, 
and environmental changes [1], [5]. 

II. METHODS AND ANALYSIS 

A. Geometric Localization Techniques 
Geometry-based localization relies on anchors and 

measured distances or angles. Trilateration and 
triangulation determine position from three or more 
reference points [6]. GNSS and UWB use time-of-flight 
ranging, often solved with least-squares. Under ideal 
conditions, UWB can achieve centimeter-level accuracy, 
while BLE fingerprinting in hospitals reached ~12 cm 
[2], [7]. However, these methods depend on line-of-sight 
and precise signals; multipath and NLOS significantly 
reduce robustness [2]. They also require fixed 
infrastructure, which may not always be available. 
Geometric methods thus are often combined with other 
techniques for reliability. 

Dead-reckoning updates position by integrating 
odometry or IMU measurements. It is self-contained and 
precise short-term but suffers from drift as small errors 
accumulate. Hence it is typically fused with landmarks, 
GNSS, or wireless updates. Hybrid systems combining 
inertial sensors with Wi-Fi or UWB outperform 
standalone inertial navigation [3], [7]. 

B. Sensor Fusion and Bayesian Filters 

Sensor fusion frames localization as a state estimation 
problem under uncertainty. The Bayesian filter family 
recursively updates a probability distribution of the state 
using motion models and observations. The most 
common example is the Kalman Filter (KF), which 
maintains a Gaussian estimate through prediction and 
correction. Under linear-Gaussian assumptions, KF is 
provably optimal [3]. Variants such as EKF and UKF 
extend it to non-linear dynamics and are widely used in 
GPS–inertial navigation and mobile robotics [3]. 

The strength of KF lies in multi-sensor fusion, where 
complementary modalities improve accuracy. Fusing 
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UWB ranges with odometry yields precise, stable 
trajectories and clearly outperforms UWB-only solutions 
[3], [4]. Anchors provide global reference, odometry 
smooths motion, and fusion corrects drift while filtering 
noise. Such systems remain efficient enough for 
embedded platforms [3], [4]. 

KF, however, assumes unimodal Gaussian errors and 
is sensitive to outliers [3]. Adaptive Kalman variants 
address this by adjusting covariances online [1]. For 
more general cases, Particle Filters (PF) represent the 
belief as a set of weighted samples, handling non-linear 
and multi-modal distributions [3]. PFs have been applied 
to indoor localization using Wi-Fi and landmarks, 
offering robustness to ambiguities like the “kidnapped 
robot” problem. Their drawback is computation: large 
particle sets are required to avoid degeneracy, especially 
in high-dimensional spaces [3]. Rao–Blackwellized and 
resampling strategies reduce this burden, making PFs 
highly robust but heavier than KF-based methods. 

C. Optimization-Based Localization and 
SLAM 

Optimization-based methods accumulate constraints 
over time and solve for the trajectory (and sometimes the 
map) that best fits all observations. Graph-Based SLAM 
is the prototypical example: robot poses are nodes, and 
sensor observations form edges. The problem is then 
solved as a least-squares optimization [11]. Modern 
sparse nonlinear solvers achieve high accuracy, 
especially by leveraging loop closures to eliminate 
accumulated drift. For instance, a robot driving a loop 
can redistribute error and align the start and end poses, 
producing a consistent trajectory [11]. 

Visual SLAM extends this idea with bundle 
adjustment, jointly optimizing camera poses and 3D 
landmarks, and achieving state-of-the-art accuracy in 
feature-based localization [11]. These methods naturally 
integrate long-term data and heterogeneous sensor 
constraints, while incremental smoothing (e.g., iSAM) 
enables near real-time operation [11]. 

A key challenge is robustness to incorrect loop 
closures, which can distort the solution. Robust cost 
functions, switchable constraints, and adaptive robust 
losses have been proposed to down-weight or reject 
outliers [4]. These approaches significantly improve 
resilience without heavy parameter tuning. Although 
large-scale graphs with thousands of nodes can be 
computationally demanding, sparsity and incremental 
solvers usually keep them tractable. 

In summary, optimization-based localization offers 
high global accuracy and robustness when enhanced 
with proper outlier handling. In practice, these methods 
are often combined with local filters: the front-end tracks 
motion, while the back-end periodically optimizes 
constraints to correct drift [4], [11]. 

D. Learning-Based and Data-Driven Methods 
Recent years have seen rapid growth in machine 

learning, especially deep learning, for localization. 
These approaches learn mappings from sensor inputs to 

positions instead of relying solely on physical models. In 
indoor contexts, fingerprinting with Wi-Fi RSSI or 
magnetic data is often combined with neural networks to 
improve accuracy [2], [7]. For visual localization, 
convolutional networks can directly regress camera pose 
(e.g., PoseNet) or support SLAM by extracting robust 
features [5], [8], [9], [10], [12]. 

The appeal of learning methods lies in capturing non-
linear, high-dimensional patterns that classical models 
cannot. Deep visual networks, for instance, have 
achieved centimeter-level accuracy in controlled 
environments [5]. Hybrid IoT systems combining BLE 
beacons with ML have demonstrated decimeter-level 
tracking for healthcare and asset monitoring [7]. Once 
trained, such models can run efficiently, providing real-
time estimates [5]. 

Challenges remain: deep models are data-hungry, 
environment-specific, and often fail to generalize across 
domains [5]. They also lack explicit uncertainty 
modeling and may be sensitive to adversarial conditions 
such as motion blur or missing signals [5]. This can make 
purely learned systems brittle. 

A promising trend is hybridization-using deep 
learning within classical frameworks. Neural networks 
can predict observation reliability, correct sensor biases, 
or provide features such as LoFTR, SuperGlue, and 
NetVLAD that feed into geometric or graph-based back-
ends [8], [9], [10], [12]. This leverages the adaptability 
of learning with the stability of model-based methods.  

TABLE I.  COMPARISON OF TOP LOCALIZATION METHODS 

Method Principle Pros Cons 

Geometry 

Distances/angles to 
anchors 

Absolute position; 
simple; high 

accuracy in LOS 

Needs 
infrastructure; poor 

in NLOS 

Dead-Reckoning Motion integration 
(IMU, odometry) 

Self-contained; 
smooth short-term 

Drift grows; not 
reliable long-term 

Kalman Filter Linear-Gaussian 
fusion 

Efficient; real-time; 
widely used 

Sensitive to model 
errors, outliers 

Particle Filter Sampling-based 
Bayes 

Handles non-linear 
& multi-modal; 

robust 

Computationally 
heavy 

Graph-SLAM Pose graph 
optimization 

Global consistency; 
loop closure 
correction 

Needs good 
associations; 

heavier compute 

Deep Learning Neural networks on 
sensor data 

Learns complex 
patterns; fast 

inference 

Data-hungry; poor 
generalization 

 

III. RESULTS AND DISCUSSION 
Each localization approach offers a different balance 

between accuracy, robustness, and practicality. In 
practice, designers often combine multiple methods to 
exploit complementary strengths. A common 
architecture is to use a Kalman or Particle Filter as the 
core state estimator, fed by odometry, IMU, and absolute 
inputs (GPS, UWB, vision). The filter enables real-time 
fusion, while a graph-based back-end periodically 
corrects drift through loop closures. Deep learning 
modules can enhance robustness by recognizing places 
or filtering unreliable measurements [4]. 

From the comparative analysis (Table 1), some clear 
trends emerge. Geometry-based multilateration provides 
strong accuracy when assumptions hold-GNSS outdoors 
or UWB indoors-but suffers indoors from multipath and 
NLOS [2], [7]. Such systems require infrastructure and 
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are fragile to environmental changes unless paired with 
error detection or down-weighting unreliable signals. 
Dead-reckoning alone is not sustainable due to drift, yet 
it is indispensable for continuity and redundancy, 
typically corrected with periodic external fixes [3], [7]. 

Bayesian filters (KF, EKF, UKF, PF) are highly 
effective for robust fusion. They smooth random noise 
and can detect faults in real time [3]. Adaptive filters 
adjust parameters on the fly, while PFs maintain multiple 
hypotheses, offering robustness in ambiguous 
environments at higher computational cost [3]. 

Graph-SLAM and optimization methods have 
become the standard in high-precision mapping, 
eliminating drift through loop closures and global 
optimization [11]. Robust formulations-switchable 
constraints, robust kernels, consensus methods-mitigate 
false associations [4]. These systems often complement 
filters: the front-end tracks locally, while the back-end 
refines trajectories at a slower rate. 

Learning-based approaches are increasingly 
impactful, particularly for visual re-localization and 
indoor fingerprinting. Neural networks outperform 
classical interpolation for Wi-Fi or BLE signals [2], [7], 
and deep visual models achieve viewpoint- and lighting-
invariant recognition [5], [8], [9], [10], [12]. However, 
they remain limited by data requirements and 
generalization challenges. Research into domain 
randomization and uncertainty-aware deep networks 
seeks to improve robustness [5]. 

Overall, achieving both accuracy and robustness 
requires hybridization. Systems that combine multiple 
modalities-geometry for absolute scale, dead-reckoning 
for continuity, Bayesian filters for fusion, optimization 
for global consistency, and deep learning for perception-
consistently show the highest resilience [1], [3], [10]. 
Table 1 summarizes these trade-offs and can guide 
method selection depending on computational resources, 
environment, and safety requirements. 

IV. CONCLUSION 
Reliable localization is inherently multi-faceted and 

requires combining methods. Geometric approaches 
provide absolute positioning but degrade under 
multipath or NLOS conditions [2]. Probabilistic filters 
such as Kalman and Particle Filters enable real-time 
fusion and noise handling, forming the backbone of 
many robust systems [3]. Graph-based optimization and 
SLAM refine accuracy over time through loop closures 
and global consistency [4], [11]. Deep learning adds 
adaptability by capturing complex patterns, though it 
remains data-hungry and environment-specific [5]. 

Comparative analysis highlights a clear trend: hybrid 
frameworks achieve the best outcomes by integrating 
multiple modalities and employing robust modeling [1], 

[3]. For example, autonomous vehicles fuse GNSS, 
lidar-SLAM, vision, and IMU to achieve centimeter-
level accuracy, while indoor robotics may combine 
vision-SLAM with UWB anchors for global reference. 
Recent work also emphasizes uncertainty quantification 
and fault detection as key for trustworthy localization 
[1]. 

In practice, no single method is universally optimal-
the choice depends on application context and accuracy 
requirements. The most promising direction is tighter 
integration of learning with model-based approaches, 
leading to systems that are both precise and resilient in 
diverse conditions [5]. Such advances will be critical as 
autonomous platforms scale into complex real-world 
environments. 
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