

Comparative Analysis of Localization Methods for Accurate and Robust Positioning

<https://doi.org/10.31713/MCIT.2025.067>

Ivan Ilnytskyi

Department of Applied Mathematics
Lviv Polytechnic National University
Lviv, Ukraine
i.ilnytskyi@gmail.com

Abstract—Localization, the task of determining position in an environment, is fundamental for robotics, navigation, and tracking [1], [2]. This paper reviews modern approaches with emphasis on mathematical and computational modeling. We compare geometric methods [6], dead-reckoning with sensor fusion [3], [4], graph-based optimization (SLAM) [11], [12], and deep learning techniques [5], [8]. A comparative table highlights their accuracy, robustness, and main trade-offs. The review indicates that multi-sensor fusion and robust estimation improve reliability [3], [4], while deep learning adds potential but requires large datasets and careful design [5].

Keywords—localization, sensor fusion, SLAM, robust estimation, indoor positioning, deep learning

I. INTRODUCTION

Localization is the process of estimating the position and orientation of an object or agent within a known reference frame. It underpins many applications in autonomous robotics, vehicle navigation, wireless sensor networks, and augmented reality [1], [2], [7]. Autonomous systems must continuously localize to navigate safely, and in GPS-denied environments (e.g., indoors or urban canyons) alternative methods are required. Even outdoors, sole reliance on GNSS may be insufficient for safety-critical tasks demanding higher accuracy and reliability [1], [2].

Modern localization approaches can be broadly classified into geometry-based, sensor fusion (Bayesian filter-based), optimization-based (including SLAM), and learning-based methods [1], [5]. Geometry-based techniques (e.g., multilateration, triangulation) compute positions from reference anchors [6]. Sensor fusion treats localization as state estimation, combining predictions and noisy measurements in probabilistic frameworks such as Kalman or particle filters [3], [4]. Optimization and SLAM formulate localization as a graph or least-squares problem, solving for trajectories or maps that best explain sensor data [11], [12]. More recently, data-driven approaches with machine learning and deep neural networks aim to learn location directly from inputs or to enhance classical pipelines [9], [10].

Each class of methods has trade-offs in accuracy, computational cost, and robustness to uncertainties [1],

[2]. In this paper we review the principal techniques, analyze their modeling aspects, and summarize performance in a comparative table, with emphasis on how they achieve accuracy and cope with noise, drift, and environmental changes [1], [5].

II. METHODS AND ANALYSIS

A. Geometric Localization Techniques

Geometry-based localization relies on anchors and measured distances or angles. Trilateration and triangulation determine position from three or more reference points [6]. GNSS and UWB use time-of-flight ranging, often solved with least-squares. Under ideal conditions, UWB can achieve centimeter-level accuracy, while BLE fingerprinting in hospitals reached ~12 cm [2], [7]. However, these methods depend on line-of-sight and precise signals; multipath and NLOS significantly reduce robustness [2]. They also require fixed infrastructure, which may not always be available. Geometric methods thus are often combined with other techniques for reliability.

Dead-reckoning updates position by integrating odometry or IMU measurements. It is self-contained and precise short-term but suffers from drift as small errors accumulate. Hence it is typically fused with landmarks, GNSS, or wireless updates. Hybrid systems combining inertial sensors with Wi-Fi or UWB outperform standalone inertial navigation [3], [7].

B. Sensor Fusion and Bayesian Filters

Sensor fusion frames localization as a state estimation problem under uncertainty. The Bayesian filter family recursively updates a probability distribution of the state using motion models and observations. The most common example is the Kalman Filter (KF), which maintains a Gaussian estimate through prediction and correction. Under linear-Gaussian assumptions, KF is provably optimal [3]. Variants such as EKF and UKF extend it to non-linear dynamics and are widely used in GPS-inertial navigation and mobile robotics [3].

The strength of KF lies in multi-sensor fusion, where complementary modalities improve accuracy. Fusing

UWB ranges with odometry yields precise, stable trajectories and clearly outperforms UWB-only solutions [3], [4]. Anchors provide global reference, odometry smooths motion, and fusion corrects drift while filtering noise. Such systems remain efficient enough for embedded platforms [3], [4].

KF, however, assumes unimodal Gaussian errors and is sensitive to outliers [3]. Adaptive Kalman variants address this by adjusting covariances online [1]. For more general cases, Particle Filters (PF) represent the belief as a set of weighted samples, handling non-linear and multi-modal distributions [3]. PFs have been applied to indoor localization using Wi-Fi and landmarks, offering robustness to ambiguities like the “kidnapped robot” problem. Their drawback is computation: large particle sets are required to avoid degeneracy, especially in high-dimensional spaces [3]. Rao–Blackwellized and resampling strategies reduce this burden, making PFs highly robust but heavier than KF-based methods.

C. Optimization-Based Localization and SLAM

Optimization-based methods accumulate constraints over time and solve for the trajectory (and sometimes the map) that best fits all observations. Graph-Based SLAM is the prototypical example: robot poses are nodes, and sensor observations form edges. The problem is then solved as a least-squares optimization [11]. Modern sparse nonlinear solvers achieve high accuracy, especially by leveraging loop closures to eliminate accumulated drift. For instance, a robot driving a loop can redistribute error and align the start and end poses, producing a consistent trajectory [11].

Visual SLAM extends this idea with bundle adjustment, jointly optimizing camera poses and 3D landmarks, and achieving state-of-the-art accuracy in feature-based localization [11]. These methods naturally integrate long-term data and heterogeneous sensor constraints, while incremental smoothing (e.g., iSAM) enables near real-time operation [11].

A key challenge is robustness to incorrect loop closures, which can distort the solution. Robust cost functions, switchable constraints, and adaptive robust losses have been proposed to down-weight or reject outliers [4]. These approaches significantly improve resilience without heavy parameter tuning. Although large-scale graphs with thousands of nodes can be computationally demanding, sparsity and incremental solvers usually keep them tractable.

In summary, optimization-based localization offers high global accuracy and robustness when enhanced with proper outlier handling. In practice, these methods are often combined with local filters: the front-end tracks motion, while the back-end periodically optimizes constraints to correct drift [4], [11].

D. Learning-Based and Data-Driven Methods

Recent years have seen rapid growth in machine learning, especially deep learning, for localization. These approaches learn mappings from sensor inputs to

positions instead of relying solely on physical models. In indoor contexts, fingerprinting with Wi-Fi RSSI or magnetic data is often combined with neural networks to improve accuracy [2], [7]. For visual localization, convolutional networks can directly regress camera pose (e.g., PoseNet) or support SLAM by extracting robust features [5], [8], [9], [10], [12].

The appeal of learning methods lies in capturing non-linear, high-dimensional patterns that classical models cannot. Deep visual networks, for instance, have achieved centimeter-level accuracy in controlled environments [5]. Hybrid IoT systems combining BLE beacons with ML have demonstrated decimeter-level tracking for healthcare and asset monitoring [7]. Once trained, such models can run efficiently, providing real-time estimates [5].

Challenges remain: deep models are data-hungry, environment-specific, and often fail to generalize across domains [5]. They also lack explicit uncertainty modeling and may be sensitive to adversarial conditions such as motion blur or missing signals [5]. This can make purely learned systems brittle.

A promising trend is hybridization-using deep learning within classical frameworks. Neural networks can predict observation reliability, correct sensor biases, or provide features such as LoFTR, SuperGlue, and NetVLAD that feed into geometric or graph-based back-ends [8], [9], [10], [12]. This leverages the adaptability of learning with the stability of model-based methods.

TABLE I. COMPARISON OF TOP LOCALIZATION METHODS

Method	Principle	Pros	Cons
Geometry	Distances/angles to anchors	Absolute position; simple; high accuracy in LOS	Needs infrastructure; poor in NLOS
Dead-Reckoning	Motion integration (IMU, odometry)	Self-contained; smooth short-term	Drift grows; not reliable long-term
Kalman Filter	Linear-Gaussian fusion	Efficient; real-time; widely used	Sensitive to model errors, outliers
Particle Filter	Sampling-based Bayes	Handles non-linear & multi-modal; robust	Computationally heavy
Graph-SLAM	Pose graph optimization	Global consistency; loop closure correction	Needs good associations; heavier compute
Deep Learning	Neural networks on sensor data	Learns complex patterns; fast inference	Data-hungry; poor generalization

III. RESULTS AND DISCUSSION

Each localization approach offers a different balance between accuracy, robustness, and practicality. In practice, designers often combine multiple methods to exploit complementary strengths. A common architecture is to use a Kalman or Particle Filter as the core state estimator, fed by odometry, IMU, and absolute inputs (GPS, UWB, vision). The filter enables real-time fusion, while a graph-based back-end periodically corrects drift through loop closures. Deep learning modules can enhance robustness by recognizing places or filtering unreliable measurements [4].

From the comparative analysis (Table 1), some clear trends emerge. Geometry-based multilateration provides strong accuracy when assumptions hold-GNSS outdoors or UWB indoors-but suffers indoors from multipath and NLOS [2], [7]. Such systems require infrastructure and

are fragile to environmental changes unless paired with error detection or down-weighting unreliable signals. Dead-reckoning alone is not sustainable due to drift, yet it is indispensable for continuity and redundancy, typically corrected with periodic external fixes [3], [7].

Bayesian filters (KF, EKF, UKF, PF) are highly effective for robust fusion. They smooth random noise and can detect faults in real time [3]. Adaptive filters adjust parameters on the fly, while PFs maintain multiple hypotheses, offering robustness in ambiguous environments at higher computational cost [3].

Graph-SLAM and optimization methods have become the standard in high-precision mapping, eliminating drift through loop closures and global optimization [11]. Robust formulations-switchable constraints, robust kernels, consensus methods-mitigate false associations [4]. These systems often complement filters: the front-end tracks locally, while the back-end refines trajectories at a slower rate.

Learning-based approaches are increasingly impactful, particularly for visual re-localization and indoor fingerprinting. Neural networks outperform classical interpolation for Wi-Fi or BLE signals [2], [7], and deep visual models achieve viewpoint- and lighting-invariant recognition [5], [8], [9], [10], [12]. However, they remain limited by data requirements and generalization challenges. Research into domain randomization and uncertainty-aware deep networks seeks to improve robustness [5].

Overall, achieving both accuracy and robustness requires hybridization. Systems that combine multiple modalities-geometry for absolute scale, dead-reckoning for continuity, Bayesian filters for fusion, optimization for global consistency, and deep learning for perception-consistently show the highest resilience [1], [3], [10]. Table 1 summarizes these trade-offs and can guide method selection depending on computational resources, environment, and safety requirements.

IV. CONCLUSION

Reliable localization is inherently multi-faceted and requires combining methods. Geometric approaches provide absolute positioning but degrade under multipath or NLOS conditions [2]. Probabilistic filters such as Kalman and Particle Filters enable real-time fusion and noise handling, forming the backbone of many robust systems [3]. Graph-based optimization and SLAM refine accuracy over time through loop closures and global consistency [4], [11]. Deep learning adds adaptability by capturing complex patterns, though it remains data-hungry and environment-specific [5].

Comparative analysis highlights a clear trend: hybrid frameworks achieve the best outcomes by integrating multiple modalities and employing robust modeling [1],

[3]. For example, autonomous vehicles fuse GNSS, lidar-SLAM, vision, and IMU to achieve centimeter-level accuracy, while indoor robotics may combine vision-SLAM with UWB anchors for global reference. Recent work also emphasizes uncertainty quantification and fault detection as key for trustworthy localization [1].

In practice, no single method is universally optimal—the choice depends on application context and accuracy requirements. The most promising direction is tighter integration of learning with model-based approaches, leading to systems that are both precise and resilient in diverse conditions [5]. Such advances will be critical as autonomous platforms scale into complex real-world environments.

REFERENCES

- [1] Maharmeh, E., Al-Dubai, A., & Romdhani, I. A Comprehensive Survey on the Integrity of Localization Systems. *Sensors*, Vol. 25, No. 2, Article 358, 2025, pp. 1–20. DOI: 10.3390/s25020358.
- [2] Aziz, T., & Koo, I. A Comprehensive Review of Indoor Localization Techniques and Applications in Various Sectors. *Applied Sciences*, Vol. 15, No. 3, Article 1544, 2025, pp. 1–23. DOI: 10.3390/app15031544.
- [3] Shyfur, B., et al. Multi-Sensor Fusion for Reliable Mobile Robot Localization (UWB, Odometry, AHRS). *Biomimetics*, Vol. 10, No. 4, Article 478, 2025, pp. 1–15. DOI: 10.3390/biomimetics10040478.
- [4] Ramezani, M., et al. AEROS: Adaptive Robust Least-Squares for Graph-Based SLAM. *arXiv preprint arXiv:2110.02018 [cs.RO]*, 2021.
- [5] Chen, C., Wang, B., Lu, C., Trigoni, N., & Markham, A. Deep Learning for Visual Localization and Mapping: A Survey. *IEEE Transactions on Neural Networks and Learning Systems*, Preprint, 2023. DOI: 10.48550/arXiv.2308.14039.
- [6] Shyfur, B., et al. Trilateration Defined and Formulated in a UWB System. *Biomimetics*, Vol. 10, No. 4, 2025, pp. 900–935.
- [7] Bibbò, L., et al. An Overview of Indoor Localization for Human Activity Recognition (HAR) in Healthcare. *Sensors*, Vol. 22, No. 21, Article 8119, 2022, pp. 1–18. DOI: 10.3390/s22218119.
- [8] Sarlin, P.-E., DeTone, D., Malisiewicz, T., & Rabinovich, A. SuperGlue: Learning Feature Matching with Graph Neural Networks. In Proc. CVPR, 2020, pp. 4938–4947.
- [9] Sun, J., Shen, Z., Wang, Y., Bao, H., & Zhou, X. LoFTR: Detector-Free Local Feature Matching with Transformers. In Proc. CVPR, 2021, pp. 8922–8931.
- [10] Arandjelović, R., Gronat, P., Torii, A., Pajdla, T., & Sivic, J. NetVLAD: CNN Architecture for Weakly Supervised Place Recognition. In Proc. CVPR, 2016, pp. 5297–5307.
- [11] Sarlin, P.-E., Cadena, C., Siegwart, R., & Dymczyk, M. From Coarse to Fine: Robust Hierarchical Localization at Large Scale. In Proc. CVPR, 2019, pp. 12708–12717.
- [12] Brachmann, E., & Rother, C. DSAC++: Differentiable RANSAC for Camera Localization. In Proc. CVPR, 2019, pp. 6689–66