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Abstract— L1 regularization has long been used to 
obtain sparse representations of data, but is it possible to 
extend the convergence conditions from the linear to the 
nonlinear case? L1 regularization does not guarantee 
accurate reconstruction of a sparse state from incomplete 
data, even under linear constraints. However, once the 
amount of data exceeds a certain threshold, the 
probability of reconstruction failure with random 
matrices will be negligible. Developing a theory to 
determine the probability of success in the nonlinear case 
seems useful. This requires defining various classes of 
random nonlinear functions and examining how their 
convergence conditions vary. In particular, linear 
processes are often affected by nonlinear distortions, 
which are commonly modeled as noise. Identifying the 
physics and chemical kinetics of these distortions and 
incorporating them into the model will help improve the 
probability of successful reconstruction and enable the 
identification of factors that influence these distortions. 
This is especially important in biology, where 
understanding not only the balance of internal processes 
but also the factors influencing the stability of the system 
is crucial. 

Keywords — L1 regularization, random matrices,  
sparse reconstruction, nonlinear inverse problems. 

I.  INTRODUCTION  
There are many studies related to L1 regularization 

for nonlinear cases[9][10][11]. In general, the optimum 
is determined by the Karush–Kuhn–Tucker conditions. 
But in this article we will try to describe a basis within 
which all solutions satisfy nonlinear conditions and 
within which we will obtain a problem without 
constraints. 

It should also be clarified that there are already 
problems with some types of nonlinearity that can be 
reduced to linear ones, which in turn will link the 
convergence conditions with the linear case[2], 
although this was done for a specific case. 

As in this article, we use singular value 
decomposition. This decomposition makes it easiest to 
construct the necessary basis, and this basis is also used 
in the algorithm itself. 

In this article, we also leave room for discussion on 
how exactly to achieve the optimum in this new basis, 
there are already articles with practical applications for 
this[3][4][5][6][7][8]. 

We will consider those cases when a nonlinear 
operator can be translated by simple transformations 
into a nearly linearized form, so that in a given space it 
looks like this: 

𝐴𝐴(𝑥𝑥) = 𝐵𝐵𝐵𝐵 + 𝜀𝜀𝜀𝜀(𝑥𝑥),𝐵𝐵 ∈ 𝑅𝑅𝑛𝑛×𝑚𝑚,𝑚𝑚 < 𝑛𝑛, 

𝑥𝑥 ∈ 𝑈𝑈 ⊂ 𝑅𝑅𝑛𝑛. 

And also for the given output y there must exist x 
such that: 

𝐴𝐴(𝑥̇𝑥) = 𝑦𝑦 

|{𝑖𝑖: 𝑥̇𝑥𝑖𝑖 ≠ 0}| = 𝑑𝑑 ≪ 𝑀𝑀 

We also assume that: 
‖𝐽𝐽(𝐹𝐹, 𝑥𝑥)‖𝐿𝐿1 ≤ 1, 𝑥𝑥 ∈ 𝑈𝑈, 𝐽𝐽(𝐹𝐹, 𝑥𝑥) - Jacobian of F. 

And the matrix 𝐵𝐵  has independent random 
coefficients with uniform distribution in the interval 
[−𝜇𝜇, 𝜇𝜇],𝜇𝜇 > 0. 

Without loss of generality, we will assume that only the 
first d elements are non-zero: 

 
𝑥̇𝑥𝑖𝑖 = 0, 𝑖𝑖 > 𝑑𝑑 

Let us consider the singular value decomposition of 
matrix B: 

𝐵𝐵 = 𝑈𝑈𝑈𝑈𝑈𝑈 
To begin, let's find at least one solution that satisfies 
our conditions, not necessarily sparse: 

𝐴𝐴(𝑥̄𝑥) = 𝐵𝐵𝑥̄𝑥 + 𝜀𝜀𝜀𝜀(𝑥̄𝑥),𝐵𝐵 ∈ 𝑅𝑅𝑛𝑛×𝑚𝑚,𝑚𝑚 < 𝑛𝑛 
 

Let's consider: 
𝑥𝑥 = 𝑥̄𝑥 + 𝑑𝑑𝑑𝑑 

𝐴𝐴(𝑥𝑥) = 𝐵𝐵(𝑥̄𝑥 + 𝑑𝑑𝑑𝑑) + 𝜀𝜀𝜀𝜀(𝑥̄𝑥 + 𝑑𝑑𝑑𝑑) = 𝑦𝑦 = 𝐵𝐵𝑥̄𝑥 + 𝜀𝜀𝜀𝜀(𝑥̄𝑥) 
Thus we have: 

𝐵𝐵𝐵𝐵𝐵𝐵 + 𝜀𝜀�𝐹𝐹(𝑥̄𝑥 + 𝑑𝑑𝑑𝑑) − 𝐹𝐹(𝑥̄𝑥)� = 0 
Let's replace dx with 𝑉𝑉𝑇𝑇𝑏𝑏 and multiply by U^T on the 

left: 
𝑈𝑈𝑇𝑇𝑈𝑈𝑈𝑈𝑈𝑈𝑉𝑉𝑇𝑇𝑏𝑏 + 𝜀𝜀𝑈𝑈𝑇𝑇�𝐹𝐹(𝑥̄𝑥 + 𝑉𝑉𝑇𝑇𝑏𝑏) − 𝐹𝐹(𝑥̄𝑥)� = 0 

We reduce unitary matrices and obtain: 
𝛴𝛴𝛴𝛴 + 𝜀𝜀𝑈𝑈𝑇𝑇�𝐹𝐹(𝑥̄𝑥 + 𝑉𝑉𝑇𝑇𝑏𝑏) − 𝐹𝐹(𝑥̄𝑥)� = 0 

Using the auxiliary function 𝐺𝐺 we have: 
𝐺𝐺(𝛼𝛼) = 𝐺𝐺𝑥̄𝑥(𝛼𝛼) = 𝑈𝑈𝑇𝑇�𝐹𝐹(𝑥̄𝑥 + 𝑉𝑉𝑇𝑇𝛼𝛼) − 𝐹𝐹(𝑥̄𝑥)� 

𝛴𝛴𝛴𝛴 + 𝜀𝜀𝜀𝜀(𝑏𝑏) = 0 
To begin with, let's consider a linear branch, that is, 𝜀𝜀 =
0: 
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𝛴𝛴𝛴𝛴 = 0 

II.  LINEAR CASE 
Terence Tao and others[1] proved for the linear case 
that for: 

𝑑𝑑 ≤ 𝑚𝑚
𝛼𝛼(𝑟𝑟)
𝑙𝑙𝑙𝑙𝑙𝑙(𝑛𝑛) 

the recovery probability for l1 minimization is: 
𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟 = 1 − 𝑂𝑂(𝑛𝑛−𝑟𝑟), 

where 𝛼𝛼(𝑟𝑟) some function of m close to: 

𝛼𝛼(𝑟𝑟) ≈
1

29.6(𝑟𝑟 + 1) 

Similar probability estimates to this article can be 
obtained by following these steps: 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝛴𝛴) = 𝑚𝑚 thus: 
𝑏𝑏𝑖𝑖 = 0, 𝑖𝑖 ≤ 𝑚𝑚 
𝑏𝑏𝑖𝑖 ∈ 𝑅𝑅, 𝑖𝑖 > 𝑚𝑚 

𝑏𝑏 = 𝐼𝐼𝑛𝑛−𝑚𝑚𝑛𝑛 𝑐𝑐, 𝑐𝑐 ∈ 𝑅𝑅𝑛𝑛−𝑚𝑚 
Thus, the problem is reduced to the usual non-smooth 
optimization: 

𝐹𝐹(𝑐𝑐) = ‖𝑉𝑉𝑇𝑇𝐼𝐼𝑛𝑛−𝑚𝑚𝑛𝑛 𝑐𝑐 + 𝑥̄𝑥‖𝑙𝑙1 = ‖𝐾𝐾𝐾𝐾 + 𝑥̄𝑥‖𝑙𝑙1 
The optimum point is determined by the presence of a 
zero vector in the subgradient: 

0 ∈ 𝜕𝜕𝜕𝜕(𝑐𝑐) = 𝑆𝑆(𝐾𝐾𝐾𝐾 + 𝑥̄𝑥)𝐾𝐾, 
𝑆𝑆(𝑥𝑥) = {𝑠𝑠: 𝑠𝑠𝑖𝑖 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥𝑖𝑖)𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖 ≠ 0, |𝑠𝑠𝑖𝑖| ≤ 1𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖 = 0} 

That is, for 𝑥̇𝑥  to be an optimum, the following 
conditions must be met: 
(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥̇𝑥1), . . . , 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥̇𝑥𝑑𝑑), 𝑙𝑙1, . . . , 𝑙𝑙𝑛𝑛−𝑑𝑑)𝐾𝐾𝑇𝑇 = 0, ‖𝑙𝑙‖∞ ≤ 1 

(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥̇𝑥1), . . . , 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥̇𝑥𝑑𝑑), 𝑙𝑙1, . . . , 𝑙𝑙𝑛𝑛−𝑑𝑑) = 𝑟𝑟1𝐼𝐼𝑛𝑛𝑚𝑚𝑉𝑉, ‖𝑙𝑙‖∞
≤ 1, 𝑟𝑟1 ∈ 𝑅𝑅𝑚𝑚 

(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥̇𝑥1), . . . , 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥̇𝑥𝑑𝑑), 𝑙𝑙1, . . . , 𝑙𝑙𝑛𝑛−𝑑𝑑) = 𝑟𝑟2𝛴𝛴𝛴𝛴, ‖𝑙𝑙‖∞
≤ 1, 𝑟𝑟2 ∈ 𝑅𝑅𝑚𝑚 

(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥̇𝑥1), . . . , 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥̇𝑥𝑑𝑑), 𝑙𝑙1, . . . , 𝑙𝑙𝑛𝑛−𝑑𝑑) = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, ‖𝑙𝑙‖∞
≤ 1, 𝑟𝑟 ∈ 𝑅𝑅𝑚𝑚 

(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥̇𝑥1), . . . , 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥̇𝑥𝑑𝑑), 𝑙𝑙1, . . . , 𝑙𝑙𝑛𝑛−𝑑𝑑) = 𝑟𝑟𝑟𝑟, ‖𝑙𝑙‖∞ ≤ 1 
�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥̇𝑥1), . . . , 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥̇𝑥𝑑𝑑)� = 𝑟𝑟𝐵𝐵1, ‖𝑟𝑟𝐵𝐵2‖∞ ≤ 1 

𝛽𝛽 = 𝑀𝑀[𝜉𝜉12+. . . +𝜉𝜉𝑛𝑛2] = 𝑛𝑛
𝜇𝜇2

3
, 𝜉𝜉𝑖𝑖 = 𝑈𝑈([−𝜇𝜇, 𝜇𝜇]) 

Where 𝑀𝑀[·]  - mathematical expectation for random 
matrices with a fixed 𝑥̇𝑥. 

 
𝑟̇𝑟 = 𝛽𝛽−1�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥̇𝑥1), . . . , 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥̇𝑥𝑑𝑑)�𝐵𝐵1𝑇𝑇 
𝑀𝑀[𝑇𝑇(𝐵𝐵1)] = 𝑀𝑀[𝐸𝐸 − 𝛽𝛽−1𝐵𝐵1𝑇𝑇𝐵𝐵1] = 0 

𝑀𝑀[𝐵𝐵1𝑇𝑇𝐵𝐵2] = 0 
𝑀𝑀[𝑟̇𝑟𝐵𝐵1] = �𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥̇𝑥1), . . . , 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥̇𝑥𝑑𝑑)� 

𝑀𝑀[𝑟̇𝑟𝐵𝐵2] = 0 
𝑟𝑟 = �𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥̇𝑥1), . . . , 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥̇𝑥𝑑𝑑)��𝐸𝐸 − 𝑇𝑇(𝐵𝐵1)�−1𝛽𝛽−1𝐵𝐵1 

We substitute this 𝑟𝑟(𝐵𝐵1, 𝑥̇𝑥)  and we obtain sufficient 
stability conditions for 𝑥̇𝑥: 

𝑟𝑟(𝐵𝐵1, 𝑥̇𝑥)𝐵𝐵1 = �𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥̇𝑥1), . . . , 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥̇𝑥𝑑𝑑)� 
‖𝑟𝑟(𝐵𝐵1, 𝑥̇𝑥)𝐵𝐵2‖∞ < 1 

To do this, it is sufficient to prove: 
‖𝑟̇𝑟𝐵𝐵2‖∞ + ‖(𝑟𝑟(𝐵𝐵1, 𝑥̇𝑥) − 𝑟̇𝑟)𝐵𝐵2‖∞ < 1 

Because of independence of the matrices 𝐵𝐵1,𝐵𝐵2  we 
have ‖𝑟̇𝑟𝐵𝐵2‖∞ is close to zero. 
Because of 𝑇𝑇(𝐵𝐵1) is close to zero we have‖(𝑟𝑟(𝐵𝐵1, 𝑥̇𝑥) −
𝑟̇𝑟)𝐵𝐵2‖∞ is close to zero. 
Therefore, although this is a sufficient but not a 
necessary condition, it describes a large number of 
cases of convergence 

 

III.  NONLINEAR CASE 
For the nonlinear case, we consider: 

𝑏𝑏 = (𝑒𝑒1, . . . , 𝑒𝑒𝑚𝑚, 𝑐𝑐1, . . . , 𝑐𝑐𝑛𝑛−𝑚𝑚), 𝑏𝑏 = 𝐼𝐼𝑚𝑚𝑛𝑛 𝑒𝑒 + 𝐼𝐼𝑛𝑛−𝑚𝑚𝑛𝑛 𝑐𝑐 
𝑒𝑒 ∈ 𝑅𝑅𝑚𝑚, 𝑐𝑐 ∈ 𝑅𝑅𝑛𝑛−𝑚𝑚 

Substituting into the expression we will have: 
𝛴𝛴(𝐼𝐼𝑚𝑚𝑛𝑛 𝑒𝑒 + 𝐼𝐼𝑛𝑛−𝑚𝑚𝑛𝑛 𝑐𝑐) + 𝜀𝜀𝜀𝜀(𝐼𝐼𝑚𝑚𝑛𝑛 𝑒𝑒 + 𝐼𝐼𝑛𝑛−𝑚𝑚𝑛𝑛 𝑐𝑐) = 0 

𝛴𝛴𝐼𝐼𝑚𝑚𝑛𝑛 𝑒𝑒 + 𝜀𝜀𝜀𝜀(𝐼𝐼𝑚𝑚𝑛𝑛 𝑒𝑒 + 𝐼𝐼𝑛𝑛−𝑚𝑚𝑛𝑛 𝑐𝑐) = 0 
Solving this equation for 𝑒𝑒 we get 𝑒𝑒(𝑐𝑐): 

𝛴𝛴𝐼𝐼𝑚𝑚𝑛𝑛 𝑒𝑒(с) + 𝜀𝜀𝜀𝜀(𝐼𝐼𝑚𝑚𝑛𝑛 𝑒𝑒(с) + 𝐼𝐼𝑛𝑛−𝑚𝑚𝑛𝑛 𝑐𝑐) = 0 
Let's take the Jacobian of the expression: 

𝛴𝛴𝐼𝐼𝑚𝑚𝑛𝑛 𝐽𝐽(𝑒𝑒, с) + 𝜀𝜀𝜀𝜀�𝐺𝐺, 𝑏𝑏(𝑐𝑐)�(𝐼𝐼𝑚𝑚𝑛𝑛 𝐽𝐽(𝑒𝑒, с) + 𝐼𝐼𝑛𝑛−𝑚𝑚𝑛𝑛 ) = 0 
�𝛴𝛴𝐼𝐼𝑚𝑚𝑛𝑛 + 𝜀𝜀𝜀𝜀�𝐺𝐺, 𝑏𝑏(𝑐𝑐)�𝐼𝐼𝑚𝑚𝑛𝑛 �𝐽𝐽(𝑒𝑒, с) = −𝜀𝜀𝜀𝜀�𝐺𝐺, 𝑏𝑏(𝑐𝑐)�𝐼𝐼𝑛𝑛−𝑚𝑚𝑛𝑛  

 
From which we obtain an expression for the 𝐽𝐽(𝑒𝑒, с): 

−𝜀𝜀�𝛴𝛴𝐼𝐼𝑚𝑚𝑛𝑛 + 𝜀𝜀𝜀𝜀�𝐺𝐺, 𝑏𝑏(𝑐𝑐)�𝐼𝐼𝑚𝑚𝑛𝑛 �
−1𝐽𝐽�𝐺𝐺, 𝑏𝑏(𝑐𝑐)�𝐼𝐼𝑛𝑛−𝑚𝑚𝑛𝑛  

where: 
𝑏𝑏(с) = 𝐼𝐼𝑚𝑚𝑛𝑛 𝑒𝑒(с) + 𝐼𝐼𝑛𝑛−𝑚𝑚𝑛𝑛 𝑐𝑐 

Our problem with nonlinear constraints has been 
reduced to the following: 

𝐹𝐹(𝑐𝑐) = ‖𝑉𝑉𝑇𝑇𝑏𝑏(𝑐𝑐) + 𝑥̄𝑥‖𝑙𝑙1 → 𝑚𝑚𝑚𝑚𝑚𝑚 
The optimum point is determined by the presence of a 
zero vector in the Clarke subdifferential: 

0 ∈ 𝜕𝜕𝜕𝜕(𝑐𝑐) = 𝑆𝑆(𝐾𝐾𝐾𝐾 + 𝑥̄𝑥)𝑉𝑉𝑇𝑇𝐽𝐽(𝑏𝑏, 𝑐𝑐) 
𝑆𝑆(𝑥𝑥) = {𝑠𝑠: 𝑠𝑠𝑖𝑖 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥𝑖𝑖)𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖 ≠ 0, |𝑠𝑠𝑖𝑖| ≤ 1𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖 = 0} 

To obtain the stability conditions, we introduce the 
substitution: 

𝐵̇𝐵 = 𝐵𝐵𝐵𝐵 + 𝜀𝜀𝜀𝜀(𝐹𝐹, 𝑥̇𝑥), 𝐹̇𝐹(𝑥𝑥) = 𝐹𝐹(𝑥𝑥) − 𝐽𝐽(𝐹𝐹, 𝑥̇𝑥)𝑥𝑥 
We have a problem where at 𝐽𝐽(𝐹̇𝐹, 𝑥̇𝑥) = 0: 

𝐴𝐴(𝑥𝑥) = 𝐵̇𝐵𝑥𝑥 + 𝜀𝜀𝐹̇𝐹(𝑥𝑥),𝐵𝐵 ∈ 𝑅𝑅𝑛𝑛×𝑚𝑚,𝑚𝑚 < 𝑛𝑛 
Then, since: 

𝐵̇𝐵 = 𝑈̇𝑈𝛴̇𝛴𝑉̇𝑉, 𝐾̇𝐾 = 𝑉̇𝑉𝐼𝐼𝑛𝑛−𝑚𝑚𝑛𝑛  
𝐺̇𝐺𝑥̇𝑥(𝛼𝛼) = 𝑈̇𝑈𝑇𝑇 �𝐹̇𝐹(𝑥̇𝑥 + 𝑉̇𝑉𝑇𝑇𝛼𝛼) − 𝐹̇𝐹(𝑥̇𝑥)� 

For 𝐽𝐽(𝑒̇𝑒, с̇) we have: 

−𝜀𝜀 �𝛴̇𝛴𝐼𝐼𝑚𝑚𝑛𝑛 + 𝜀𝜀𝜀𝜀 �𝐺̇𝐺, 𝑏̇𝑏(𝑐̇𝑐)� 𝐼𝐼𝑚𝑚𝑛𝑛 �
−1
𝐽𝐽 �𝐺̇𝐺, 𝑏̇𝑏(𝑐̇𝑐)� 𝐼𝐼𝑛𝑛−𝑚𝑚𝑛𝑛  

Therefore, if: 
(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥̇𝑥1), . . . , 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥̇𝑥𝑑𝑑), 𝑙𝑙1, . . . , 𝑙𝑙𝑛𝑛−𝑑𝑑)𝐾̇𝐾 = 0 

‖𝑙𝑙‖∞ < 1 
𝐾̇𝐾 = �𝐸𝐸 − 𝜀𝜀(𝛴̇𝛴𝐼𝐼𝑚𝑚𝑛𝑛 )−1𝑈̇𝑈𝑇𝑇𝐽𝐽(𝐹𝐹, 𝑥̇𝑥)�𝐾𝐾 

Which doesn't spoil the conditions too much, especially 
if there is: 

�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥̇𝑥1), . . . , 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥̇𝑥𝑑𝑑), 𝑙𝑙1, . . . , 𝑙𝑙𝑛𝑛−𝑑𝑑�𝐾𝐾 = 0 
�𝑙𝑙�

∞
< 1 − 𝐶𝐶𝐶𝐶 

Where the constant C, as can be seen, depends on the 
distribution of singular values 𝛴̇𝛴𝐼𝐼𝑚𝑚for a given class of 
random matrices. 

 

IV.  IMPLEMENTATION OF THE ALGORITHM 
The author of the article believes that nonlinear 

reconstruction algorithms, especially in the class 
described in the introduction, benefit from the transition 
to the basis that was considered. 

We will demonstrate a potential implementation 
using a simple algorithm: 

𝑔̄𝑔0 = 𝑔𝑔0 ∈ 𝜕𝜕𝜕𝜕(𝑐𝑐0) 
𝑔̄𝑔𝑘𝑘+1 = (1 − 𝛽𝛽)𝑔𝑔𝑘𝑘 + 𝛽𝛽𝑔̄𝑔𝑘𝑘,𝑔𝑔𝑘𝑘 ∈ 𝜕𝜕𝜕𝜕(𝑐𝑐𝑘𝑘) 

с𝑘𝑘+1 = 𝑐𝑐𝑘𝑘 − 𝜆𝜆𝑘𝑘
𝑔𝑔𝑘𝑘+1¯

‖𝑔𝑔𝑘𝑘+1¯ ‖∞ + 𝛿𝛿
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1 + 𝑘𝑘
2
3
 

where 𝛿𝛿 - computational error. 
To apply any subradient algorithm we need to 

calculate the subgradient, and for the subradient we 
need to calculate the function 𝑣𝑣𝑣𝑣(𝑏𝑏, 𝑐𝑐), 𝑣𝑣 ∈
𝑆𝑆(𝐾𝐾𝐾𝐾 + 𝑥̄𝑥)𝑉𝑉𝑇𝑇. 
First we need to calculate the function 𝑒𝑒(𝑐𝑐𝑘𝑘): 

Algorithm 1 
For each 𝑒𝑒(𝑐𝑐𝑘𝑘) we generate a sequence 𝑒𝑒𝑖𝑖: 

𝑒𝑒0 = {𝑒𝑒
(𝑐𝑐𝑘𝑘−1)𝑖𝑖𝑖𝑖𝑖𝑖 > 0

0𝑖𝑖𝑖𝑖𝑖𝑖 = 0  

𝑒𝑒𝑖𝑖+1 = −𝜀𝜀(𝛴𝛴𝐼𝐼𝑚𝑚𝑛𝑛 )−1𝐺𝐺(𝐼𝐼𝑚𝑚𝑛𝑛 𝑒𝑒𝑖𝑖 + 𝐼𝐼𝑛𝑛−𝑚𝑚𝑛𝑛 𝑐𝑐𝑘𝑘) 
while(‖𝑒𝑒𝑖𝑖+1 − 𝑒𝑒𝑖𝑖‖𝑙𝑙1 > 2𝛿𝛿). 

For convergence, it is sufficient that: 
𝑇𝑇1(𝛼𝛼) = −𝜀𝜀(𝛴𝛴𝐼𝐼𝑚𝑚𝑛𝑛 )−1𝐺𝐺(𝐼𝐼𝑚𝑚𝑛𝑛 𝛼𝛼 + 𝐼𝐼𝑛𝑛−𝑚𝑚𝑛𝑛 𝑐𝑐𝑘𝑘) 

was a non-stretching operator. 
Now we can already define the iterations for the 
calculation 𝑔𝑔 = 𝑣𝑣𝑣𝑣(𝑏𝑏, 𝑐𝑐𝑘𝑘): 

Algorithm 2 
𝑔𝑔 = −𝜀𝜀𝜀𝜀�𝛴𝛴𝐼𝐼𝑚𝑚𝑛𝑛 + 𝜀𝜀𝜀𝜀�𝐺𝐺, 𝑏𝑏(𝑐𝑐𝑘𝑘)�𝐼𝐼𝑚𝑚𝑛𝑛 �

−1𝐽𝐽�𝐺𝐺, 𝑏𝑏(𝑐𝑐𝑘𝑘)�𝐼𝐼𝑛𝑛−𝑚𝑚𝑛𝑛  
𝑔𝑔 = −𝜀𝜀𝜀𝜀(𝛴𝛴𝐼𝐼𝑚𝑚𝑛𝑛 )−1𝐽𝐽�𝐺𝐺, 𝑏𝑏(𝑐𝑐𝑘𝑘)�𝐼𝐼𝑛𝑛−𝑚𝑚𝑛𝑛  

𝑤𝑤 = 𝑣𝑣�𝐸𝐸𝑚𝑚 + 𝜀𝜀(𝛴𝛴𝐼𝐼𝑚𝑚𝑛𝑛 )−1𝐽𝐽�𝐺𝐺, 𝑏𝑏(𝑐𝑐𝑘𝑘)�𝐼𝐼𝑚𝑚𝑛𝑛 �
−1

 
To find 𝑤𝑤(𝑐𝑐𝑘𝑘), we apply the algorithm: 

𝑤𝑤0 = {𝑤𝑤
(𝑐𝑐𝑘𝑘−1)𝑖𝑖𝑖𝑖𝑖𝑖 > 0
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = 0  

𝑤𝑤𝑖𝑖+1 = 𝑣𝑣 − 𝜀𝜀𝑤𝑤𝑖𝑖(𝛴𝛴𝐼𝐼𝑚𝑚𝑛𝑛 )−1𝐽𝐽�𝐺𝐺, 𝑏𝑏(𝑐𝑐)�𝐼𝐼𝑚𝑚𝑛𝑛  
while(‖𝑤𝑤𝑖𝑖+1 − 𝑤𝑤𝑖𝑖‖𝑙𝑙1 > 2𝛿𝛿) 

For convergence, it is sufficient that: 
𝑇𝑇2(𝛼𝛼) = 𝑣𝑣 − 𝜀𝜀𝜀𝜀(𝛴𝛴𝐼𝐼𝑚𝑚𝑛𝑛 )−1𝐽𝐽�𝐺𝐺, 𝑏𝑏(𝑐𝑐)�𝐼𝐼𝑚𝑚𝑛𝑛  

was a non-stretching operator. 
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