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Abstract— L1 regularization has long been used to
obtain sparse representations of data, but is it possible to
extend the convergence conditions from the linear to the
nonlinear case? L1 regularization does not guarantee
accurate reconstruction of a sparse state from incomplete
data, even under linear constraints. However, once the
amount of data exceeds a certain threshold, the
probability of reconstruction failure with random
matrices will be negligible. Developing a theory to
determine the probability of success in the nonlinear case
seems useful. This requires defining various classes of
random nonlinear functions and examining how their
convergence conditions vary. In particular, linear
processes are often affected by nonlinear distortions,
which are commonly modeled as noise. Identifying the
physics and chemical Kinetics of these distortions and
incorporating them into the model will help improve the
probability of successful reconstruction and enable the
identification of factors that influence these distortions.
This is especially important in biology, where
understanding not only the balance of internal processes
but also the factors influencing the stability of the system
is crucial.
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1. INTRODUCTION

There are many studies related to L1 regularization
for nonlinear cases[9][10][11]. In general, the optimum
is determined by the Karush—Kuhn—Tucker conditions.
But in this article we will try to describe a basis within
which all solutions satisfy nonlinear conditions and
within which we will obtain a problem without
constraints.

It should also be clarified that there are already
problems with some types of nonlinearity that can be
reduced to linear ones, which in turn will link the

convergence conditions with the linear case[2],
although this was done for a specific case.
As in this article, we use singular value

decomposition. This decomposition makes it easiest to
construct the necessary basis, and this basis is also used
in the algorithm itself.

In this article, we also leave room for discussion on
how exactly to achieve the optimum in this new basis,
there are already articles with practical applications for

this[3][4][5][6][7][8].

We will consider those cases when a nonlinear
operator can be translated by simple transformations
into a nearly linearized form, so that in a given space it
looks like this:

A(x) = Bx + eF(x),B € R™™ m <n,
x € U c R™.

And also for the given output y there must exist x
such that:

Ax) =y

We also assume that:
lJ(F,)ll,, <1,x € U, J(F,x) - Jacobian of F.

And the matrix B has independent random
coefficients with uniform distribution in the interval

[—u, u],u > 0.

Without loss of generality, we will assume that only the
first d elements are non-zero:

% =0,i>d
Let us consider the singular value decomposition of
matrix B:
B=UXV
To begin, let's find at least one solution that satisfies
our conditions, not necessarily sparse:
A(X) =Bx+eF(x),BER™™ m<n

Let's consider:
x=Xx+dx
A(x) =B(x +dx) + eF(x +dx) =y = Bx + eF (X)
Thus we have:
Bdx + e(F(aZ +dx) — F(a?)) =0
Let's replace dx with Vb and multiply by UT on the
left:
UTULVVTh + eUT(F(x + VTh) — F(x)) =0
We reduce unitary matrices and obtain:
Xb+eUT(F(x +VTh) —F(%)) =0
Using the auxiliary function G we have:
G(a) = Ge(a@) =UT(F(x+VTa) — F(%))
Jb+eG(b)=0
To begin with, let's consider a linear branch, that is, € =
0:
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Zb=0

II. LINEAR CASE

Terence Tao and others[1] proved for the linear case
that for:
a(r)

log(n)
the recovery probability for I1 minimization is:
Prec =1—0(n""),
where a(r) some function of m close to:
1
29.6(r+1)
Similar probability estimates to this article can be
obtained by following these steps:
rank(X) = m thus:
bi = O,l <m
bi € R,l >m
b=1I}_,cc€ER"™
Thus, the problem is reduced to the usual non-smooth
optimization:
F(©) = VB + %, = IKe + 2,
The optimum point is determined by the presence of a
zero vector in the subgradient:
0 € dF(c) = S(Kc + XK,

S(x) = {s:s; = sign(x)ifx; # 0,|s;| < lifx; = 0}
That is, for x to be an optimum, the following
conditions must be met:

(sign(xy),...,sign(xy), 1, ..o, Li— KT =0, |1l < 1

(Sign(xl)i ] Sign(xd)' l1; T ln—d) = 7"1131‘/. ”l”oo

d<m

a(r) =~

<17 €RM
(sign(xy),...,sign(xg), i, ..o, biq) = 122V, 1l o
<1,r, €R™
(sign(xy),...,sign(xg), by, ..., Liq) = rUZV, |||
<1,r€eR™

(sign(xq),...,sign(xg), L, ..., lpeq) = 7B, |l < 1
(sign(iy),...,sign(ta)) = rBy, lIrBalle < 1
2
U
Where M[-] - mathematical expectation for random
matrices with a fixed x.

7= B~ (sign(xy),..., sign(iq))BT
M[T(B,)] = M[E — B7'B{B;] =0

M[BTB,] =0
M[7B,] = (sign(xy),...,sign(xy))
M[7B,] =0

r = (sign(ty),..., sign(xa))(E - T(B,)) BB,
We substitute this (B;,x) and we obtain sufficient
stability conditions for x:

7(By,%)B; = (sign(xy),...,sign(xy))
llm(By, ¥)Balle <1
To do this, it is sufficient to prove:
7Bzl + 1(r(By, %) — #)B,lle < 1
Because of independence of the matrices By, B, we
have ||7B; || is close to zero.
Because of T(B;) is close to zero we have||(r(By, x) —
7)B; || is close to zero.
Therefore, although this is a sufficient but not a
necessary condition, it describes a large number of
cases of convergence

III. NONLINEAR CASE

For the nonlinear case, we consider:
b=C(ey....,emCi o rCnem),b =ILhe + 17 ¢
e €ER™,ceRM™
Substituting into the expression we will have:
X(Ie+ 1P pc)+eG(le+ 17 ,c)=0
e+ eG(Ile+ 1T ,c)=0
Solving this equation for e we get e(c):
ZIte(c) + eG(Ie(c) + I ,c) =0
Let's take the Jacobian of the expression:
Z1j(e o) + &/ (G, b(0)) (%] (e,c) + I2_,) =0
(Z1 + ¢ (G, ()R] (e,0) = —&J (G, b(c)) R

From which we obtain an expression for the (e, ¢):
—e(z12 + &/ (G, b)) 1(G,b(E)) M
where:
b(c) = te(c) + Il_,,.c

Our problem with nonlinear constraints has been
reduced to the following:

F(c) = IVTh(c) + x|, » min
The optimum point is determined by the presence of a
zero vector in the Clarke subdifferential:

0€dF(c)=S(Kc+x)VTJ(b,c)

S(x) = {s:s; = sign(x)ifx; # 0,|s;| < lifx; = 0}
To obtain the stability conditions, we introduce the
substitution:

B =Bx+¢J(F,x),F(x) =F(x)—J(F,%)x
We have a problem where at J(F,x) = 0:

A(x) = Bx+¢F(x),BER™ m<n
Then, since:
B=USV,K =VIL,,
Go(@) = UT (FG+VTa) - F(2))
For J (¢, ¢) we have:
-1
—¢ (2’1;; +e (G’, b(c‘)) 1,’;) )i (G, b(c')) .

Therefore, if:

(sign(xy),...,sign(xy), ly,..., g )K =0

Il <1
K =(E-eGR)0T(F0)K
Which doesn't spoil the conditions too much, especially
if there is:
(sign(xy),...,sign(kq), by, ..., lh_g)K =0
il <1-ce

Where the constant C, as can be seen, depends on the
distribution of singular values X1, for a given class of
random matrices.

IV. IMPLEMENTATION OF THE ALGORITHM

The author of the article believes that nonlinear
reconstruction algorithms, especially in the class
described in the introduction, benefit from the transition
to the basis that was considered.

We will demonstrate a potential implementation
using a simple algorithm:

Jo = 9o € 9F (co)
Gr+1 = 1 =BG + BGr, gr € OF (c)
Cra1 = Cp — AkL
¥ lgisallo + 6
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Ak = 2
1+ k3
where § - computational error.

To apply any subradient algorithm we need to
calculate the subgradient, and for the subradient we

need to calculate the function vJ(b,c),v €

S(Kc+x)VT.

First we need to calculate the function e(cy):
Algorithm 1

For each e(c;) we generate a sequence e;:
o = {e(ck_l)ifk >0
0 0ifk =0
eiv1 = —e(ZIR) T GUne; + [pmcy)
while(llei; = eilly, > 26).
For convergence, it is sufficient that:
Ty(a) = =) 6(IRa + Ii-mcy)
was a non-stretching operator.
Now we can already define the iterations for the
calculation g = v/ (b, c;,):
Algorithm 2
g=—ev(ZI% + s](G,b(ck))lr’}l)_lj(G,b(ck))I}}_m
g =—ew@) (G b)) i-m
w = v(Ep + (S (G, b(c)) %)
To find w(cy), we apply the algorithm:
_  wlck-1)ifk >0
wo={""pirk =0
Wir1 = v —ew; ()Y (G, b(0))I7,
while(lw; — will,, > 28)
For convergence, it is sufficient that:
Ty(@) = v — ea(ZI%) 7Y (G, b(c))IR
was a non-stretching operator.
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