0 Modeling, control &

information technologies

Prompt-Based Automation of Agile
Requirements Documentation: Design for
Limited-Infrastructure Environment

Roman Kruk

The Department of Computer Science and Applied
Mathematics
The National University of Water and Environmental
Engineering, NUWEE
Rivne, Ukraine
r.a.kruk@nuwm.edu.ua

Abstract—This study presents a proof-of-concept
design and evaluation of a prompt-based automation
approach for Agile requirements documentation in a
limited-infrastructure environment. Building upon a
previously proposed five-step LLM-based analytical
framework, the research explores how structured prompt
engineering can replicate the behavior of a full
middleware system for transforming Jira exports into
publishable Feature Specification Documents. The
experiment involved 12 iterative prompt-refinement cycles
applied to real project data. The final Gem’s
configuration achieved 79% successful cases (improved by
27% when project knowledge artifacts were included).
The results confirm that prompt-driven automation can
effectively bridge unstructured Agile artifacts and formal
specification, offering a lightweight and auditable
alternative to traditional requirements documentation
workflows.

Keywords — Agile, Requirements Engineering;
Prompt Engineering; Large Language Models; Feature
Specification; Process Automation

1. INTRODUCTION

The study addresses persistent challenges in Agile
Requirements Engineering (RE), where semi-structured
artifacts such as user stories and acceptance criteria
often lack consistency, traceability, and integration with
formal system documentation[1]. In contemporary IT
practice, especially in large Agile teams, documentation
quality remains a key bottleneck that affects project
predictability and validation[2].

The object of research is the process of requirements
analysis and transformation in Agile projects; the
subject is the application of generative Al through
structured prompt engineering to automate and improve
that process.

The goal of this research stage is to evaluate how the
previously proposed five-step LLM-based method for
requirements analysis can be adapted into a prompt-only
proof-of-concept (PoC) within a limited project
infrastructure.

https://doi.org/10.31713/MCIT.2025.032

Nataliia Zhukovska

The Department of Computer Science and Applied
Mathematics
The National University of Water and Environmental
Engineering, NUWEE
Rivne, Ukraine
n.a.zhukovska@nuwm.edu.ua

II. CONTEXT OF THE STUDY

This work continues a multi-stage research program
initiated in 2023-2025, where earlier studies developed:

l.a conceptual data-flow model of Agile
requirements and its bottlenecks [3];
2.the intermediary LLM-based middleware

integrated with Jira and Neo4j
knowledge modeling[4]; and

for graph-based

3. validation of a five-step analytical framework
achieving high correctness results during the first test
run[5].

At the current stage, the focus shifts from full

middleware deployment to manual PoC implementation
within a real IT project at SoftServe Inc., constrained to
only Jira, Confluence, and Gemini tools.
The study examines how the core method can operate in
such low-infrastructure environments and whether
carefully designed prompts (custom Gems) can
reproduce the essential analytical behavior of the full
system.

[II. METHODOLOGY

An iterative experimental design was used,
consisting of 12 consecutive prompt engineering cycles
applied to real Jira epics exported from a SoftServe
project. Each iteration processed 50 epics using a
modified five-step requirements analysis logic.

The choice to focus on PoC implementation rather than
the full middleware architecture was driven by two
factors:

1. the ability to test the approach on a live corporate
project under restricted infrastructure (Jira, Confluence,
Gemini only), and

2. the need to validate the scientific novelty of the
five-step analytical method itself, independent of system
integration.

Two custom Gems were configured in Gemini: one
for transforming Jira exports into Feature Specification
Documents (FSD) and another for dependency analysis.

https://doi.org/10.31713/MCIT.2025.032
mailto:r.a.kruk@nuwm.edu.ua
mailto:n.a.zhukovska@nuwm.edu.ua

Modeling, control and information technologies — 2025

In the scope of this paper only the first prompts will be
presented and described.

Custom Gems allow prompt persistence (multi-use
configuration) and inclusion of knowledge artifacts —
project structure, terminology, and glossary — which
improve contextual accuracy. The evaluation of
generated documentation was based on three quality
criteria:

e Relevance - measures how well the generated
Feature Specification reflects the actual content
and intent of the original Jira requirements. A
highly relevant document preserves business
meaning, scope, and context without
introducing unrelated information.

e Completeness - evaluates whether all important
requirement elements (user stories, acceptance
criteria, dependencies, and constraints) were
captured and represented in the output. A
complete document should cover every Jira item
without omissions.

e Correctness - evaluates the factual and logical
accuracy of the generated specification. It
verifies that requirements are expressed clearly,
testably, and without semantic distortion or
contradictions compared to the source data.

Each scored from 1 to 5. A case was marked
successful if it achieved at least 11 total points and no
score below 3. This scoring framework was applied
consistently across all 12 experimental iterations.

IV. STUDY RESULTS

Twelve experimental iterations were conducted,
each involving prompt refinement and evaluation over
50 epics. The overall trend showed progressive
improvement in output quality, with the twelfth prompt
achieving the highest performance (Table 1).

TABLE 1. SUCCESS RESULTS OF THE ITERATIVE
‘FEATURESPECIFICATIONWRITER’ PROMPT ENGINEERING

Itera Version Name Successful

tion Cases (%)

1 Baseline simple prompt 34

2 Added structure outline 39

3 Added FR/NFR/TR separation 44

4 Added acceptance criteria preservation 48

5 Introduced dependency section 55

6 Added risk & constraint handling 48

7 Introduced traceability table 51

8 Rewritten to improve clarity & grouping 62

9 Added normalization & clustering logic 64

10 Included Gherkin[6][7] transformation rules 67

11 Optimized contextual reasoning (project | 72
structure & overview artefacts)

12 Glossary knowledge artefact included (final | 79
Feature SpecificationWriter)

A. Design of the FeatureSpecificationWriter Gem

The FeatureSpecificationWriter (FSW) Gem serves
as a reusable generative configuration designed to
transform Jira-exported requirements into a clean,
publishable Feature Specification Document (FSD)
suitable for direct insertion into documentation systems
such as Confluence or SharePoint. Its purpose is to

consolidate semi-structured Agile artifacts — stories,
tasks, and acceptance criteria — into a unified and
formally structured specification, ensuring

completeness, clarity, and traceability without the need
for middleware or database integration.

The Gem operates entirely through prompt logic and
controlled instruction chaining[8][9]. It replicates the
analytical reasoning of the five-step requirements
analysis framework proposed in previous research—
clustering, linking, dependency detection, deduplication,
and traceability—within a single self-contained
generative process. The FSW receives one or several
Jira CSV exports as input, optionally accompanied by
project briefs, diagrams, or glossary files. The output is
a markdown-structured FSD ready for publication.
Unlike ordinary prompts that rely on transient context,
the Gem configuration ensures persistence and
reproducibility: it can be reused across projects while
retaining the same logical behavior and section
structure.

The process begins with input normalization. The
Gem has a command to automatically detects field
names and separators, handles quoted newlines, trims
whitespace, and maps variable column labels such as
Summary, Title, Description, or Acceptance Criteria to
canonical categories. If any essential field is missing or
ambiguously labeled, the Gem requests a header sample
or infers mappings from semantic similarity. This
preprocessing step guarantees compatibility across
heterogeneous Jira export formats.

Next, the grouping and deduplication phase
organizes tickets by their Epic link or component
reference. Duplicate or fragmented tickets sharing the
same summary within one epic are merged, while each
issue still retains a unique traceability reference.

The content extraction and rewriting stage reads all
relevant text from the Description, Acceptance Criteria,
and Comments fields, preserving their full meaning
while reformulating them into precise, testable
requirement statements. Any uncertain or incomplete
information is flagged as TBD or Open Question rather
than being omitted. The Gem never introduces new facts
not present in the source material, thereby minimizing
hallucinations and ensuring factual fidelity.

Requirements are then classified into four
categories: User-Level Requirements (ULRs) describing
business capabilities in concise, outcome-oriented form;
Functional Requirements (FRs) detailing system
behavior, inputs, outputs, and rules; Non-Functional
Requirements (NFRs) capturing performance, security,
usability, and reliability constraints; and Transitional
Requirements (TRs) specifying migration, rollout, and
deprecation activities.

The FSW also extracts technical design notes —
non-requirement information such as architectural
constraints, API endpoints, or schema references —
from ticket comments. These notes provide valuable
engineering context but remain distinct from normative
requirements. The Gem further identifies dependencies
between functional units by detecting shared entities,

Modeling, control and information technologies — 2025

data sources, or API references, and records them in a
dedicated section.

Each generated requirement receives a stable
identifier based on its sequential position within the
document. These identifiers feed into a traceability
matrix mapping each requirement to its original Jira key.
This matrix guarantees full coverage: every Jira ticket
must appear at least once in the matrix or in the
appendix.

The resulting output follows a consistent and
document-friendly structure: feature overview, user-
level requirements, functional requirements (with
acceptance criteria and Gherkin examples), non-
functional requirements, transitional requirements,
technical design notes, dependencies, risks and
constraints, traceability matrix, open questions and
appendix.

This stable format enables instant publication and
supports automated cross-linking ~ with other
documentation artifacts. Within Gemini, the FSW Gem
may include adjustable parameters such as granularity
(one document per epic or multi-epic aggregation),
verbosity (standard or detailed), Gherkin conversion
mode, and output syntax.

A key strength of the FSW Gem lies in its anti-loss
design. Even poorly structured Jira tickets are
represented: missing data trigger placeholders rather
than omissions, and all unclassified content is archived
in the Appendix. This mechanism substantially reduces
information loss compared to typical single-pass
summarization prompts. Empirical testing has shown
that hallucinations are nearly eliminated, while the
primary failure mode remains the occasional omission
of low-context requirements.

B. FeatureSpecificationWriter Gem usage on Agile
Project

The FeatureSpecificationWriter Gem was applied
and is recommended to be applied within an Agile
project that has limited automation resources for
requirements engineering. Figure 1 depicts how a
human Agent collaborates with the Issue Management
System (Jira), the Gem, and the Document Management
System (DMS) to transform exported Agile artifacts into
structured knowledge.

The process begins when the Agent initiates the
export of an epic or a set of issues from Jira. This step
corresponds to obtaining semi-structured requirement
data in CSV or similar textual form. Once the export is
complete, the Agent sends this data to the Gem, which
acts as the intelligent processing core.

Inside the Gem, the FeatureSpecificationWriter
executes its structured reasoning chain: it parses the
exported dataset, normalizes fields, groups tickets by
epic or component, rewrites user stories into formalized
requirements, and assembles a complete Feature
Specification Document (FSD).

After processing, the Gem returns the generated FSD
to the Agent. This output is immediately suitable for
documentation platforms such as Confluence or
SharePoint. The Agent then uploads the new

specification to the Document Management System,
effectively enriching it with updated project knowledge.
The DMS acknowledges a successful update,
confirming that the new knowledge — derived from Jira
through the Gem — has been integrated into the
project’s documentation repository.

FeatureSpecificationWriter Gem usage on Agile project with limited

RE automation resources
Issue Document
Agent Management Gem Management
System (Jira) System

I
Getting Jira epic explned I
|

€—Data export=——
Sending data to the Gemm——#- |

Returning Feature sJuciﬂmnn Document

Updating Dncumemlmnugemm System with new knowledge

le — — | — — =
Document Management System updated spccessfully - —
T Get new knowledge

I | e —
| I Get new knowledge

I I g ey
I [
| |

«— — —
¥ Getnew knowledge

Figure 1. Sequence diagram on the FeatureSpecificationWriter Gem
usage on Agile project with limited RE automation resources.

From this point onward, the user (stakeholder)
interacts with the DMS to access or query this new
knowledge.

V. ADVANTAGES AND CONSTRAINTS

A. Advantages

A primary advantage of the Gem lies in its ability to
replicate a full requirements engineering pipeline within
a single generative operation. This makes it especially
valuable in infrastructure-limited environments, where
access to graph databases or REST APIs is restricted,
yet project teams still require consistent and audit-ready
documentation.

Another major benefit is reproducibility. Because the
Gem is configured as a reusable generative module with
persistent system logic, it can be applied across projects
with minimal prompt modification.

The Gem also demonstrates high interpretability and
transparency compared to conventional LLM usage. By
avoiding black-box automation layers, analysts can
observe each conversion stage and validate results
interactively.

A further advantage is contextual scalability. The
inclusion of knowledge artifacts, such as project
glossaries, structural ontologies, or domain context
significantly enhances precision. Empirical evaluation
revealed an average improvement of about 27% in
document accuracy and completeness when such
contextual data were preloaded into the Gem.

Lastly, the approach reduces manual workload and
cognitive fatigue for business analysts.

Modeling, control and information technologies — 2025

B. Constraints

Despite its strengths, the Gem faces notable
limitations. The most significant issue observed during
experimentation is partial data omission: certain low-
context or ambiguously worded Jira tickets may not be
fully captured in the generated output. While
hallucinations were almost entirely absent due to the
strict “no data invention” rule, the model occasionally
skips minor requirements that lack explicit acceptance
criteria or functional detail. This makes post-generation
review essential for ensuring completeness.

Another constraint involves manual effort in data
preparation and evaluation. Because the Gem relies on
exported Jira files rather than direct API integration,
analysts must perform CSV normalization and upload
manually.

Performance is also influenced by prompt
sensitivity. Minor variations in phrasing, order, or
emphasis within the system prompt may affect output
consistency. Maintaining stability across Gem versions
requires careful version control and continuous prompt
engineering refinement.

Lastly, while contextual grounding improves output
quality, it also raises dependency on knowledge
artifacts. Outdated or incomplete project glossaries may
bias the Gem’s interpretation, resulting in incorrect term
mappings or missed dependencies.

C. Novelty Compared to Classical Agile RE

The application of the FeatureSpecificationWriter
Gem represents a paradigm shift from conventional
Agile documentation practices, which typically depend
on human interpretation and loosely structured user
stories. In standard Agile workflows, documentation
evolves organically through tickets, often leading to
inconsistencies, duplication, and weak traceability. The
Gem introduces a formalized, LLM-driven synthesis
layer that consolidates all relevant artifacts into a single,
structured knowledge representation while preserving
their semantic integrity.

Moreover, the Gem’s modular architecture, based
entirely on prompt logic rather than code, makes it
adaptable and transparent, allowing analysts to fine-tune
reasoning steps without modifying system
infrastructure.

VI. CONCLUSIONS

This research stage demonstrated the technical

feasibility of applying the five-step LLM-based
requirements analysis method through prompt
engineering alone, without middleware integration.
By configuring reusable Gemini Gems with embedded
project knowledge and a structured Feature
Specification prompt, analysts achieved over 70%
document correctness and completeness under limited
infrastructure conditions.

In summary, the Gem serves as a semantic bridge
between unstructured issue-tracking data and structured
documentation. It enables manual yet repeatable
automation: the Agent provides input and validation,
Jira serves as the data source, the Gem performs

generative reasoning, and the DMS becomes the
persistent knowledge base. Even in the absence of full
middleware or graph-database integration, this
lightweight workflow ensures continuous transformation
of Agile artifacts into formalized, accessible, and
reusable project knowledge.

Future work will focus on engineering an advanced
Gem capable of autonomously analyzing and
maintaining internal knowledge of functional and data
dependencies between system components — operating
fully locally, without relying on external databases or
persistent storage.

This will complete the transition from static prompt
templates to adaptive, context-aware Al assistants for
requirements management.

ACKNOWLEDGMENT

The author expresses sincere gratitude to SoftServe
Inc. for providing access to real Agile project
environments, infrastructure, and professional expertise
that made this research possible.

REFERENCES

[1] HoyZ., XuM. Agile software requirements engineering
challenges-solutions—a conceptual framework from systematic
literature review. Information. 2023. Vol. 14, no. 6. P.322.
URL: https://doi.org/10.3390/info14060322 (date of access:
29.09.2025).

[2] I Inayat et al. A systematic literature review on agile
requirements engineering practices and challenges. Computers
in human behavior. 2015. Vol.51. P.915-929.
URL: https://doi.org/10.1016/j.chb.2014.10.046 (date of access:
29.09.2025).

[3] Kruk R., Zhukovska N. Analysis of bottleneck points based on
the software requirements data-flow model in Agile projects.
Mathematical Modelling and Computing. 2025. Vol. 12, no. 2.
P. 628-639. URL: https://doi.org/10.23939/mmc2025.02.628
(date of access: 04.10.2025).

[4] Kruk R., Zhukovska N. Toward Al-assisted Framework for
Agile Requirement Knowledge Management: Five-Stage
Generative LLM Approach. 2025 15" International Conference
on Advanced Computer Information Technologies., in press.

[5] Kruk R., Zhukovska N. Five-step Semantic Analysis
Middleware for Atlassian Jira Software Requirements
Transformation using Generative Large Language Model. 2025:
Mathematical and computer modelling. Series: Technical
sciences. Vol. 27. P. 40-57. URL:
https://doi.org/10.32626/2308-5916.2025-27.40-57 (date of
access: 04.10.2025) [in Ukrainian].

[6] C. Lauer, C. Sippl. Benefits of Behavior Driven Development in
Scenario-based Verification of Automated Driving. 2022 IEEE
25th International Conference on Intelligent Transportation
Systems (ITSC). URL:
https://doi.org/10.1109/ITSC55140.2022.9922498 (date of
access: 29.09.2025).

[7] Nic Werner. Writing User Stories With Gherkin. URL:
https://medium.com/@nic/writing-user-stories-with-gherkin-
dda63461b1d2 (date of access: 29.09.2025).

[8] Leon Nichols. The Ultimate Guide to Google Gemini Gems.
URL: https://leonnicholls.medium.com/the-ultimate-guide-to-
google-gemini-gems-78182be784af (date of access:
29.09.2025).

[9] A.Kale et al. Unveiling the Power of Al Prompt Engineering: A
Comprehensive Exploration. International Conference Electrical
Energy Systems. 2024. URL:
https://doi.org/10.1109/ICEES61253.2024.10776884 (date of
access: 29.09.2025).

https://doi.org/10.3390/info14060322
https://doi.org/10.1016/j.chb.2014.10.046
https://doi.org/10.23939/mmc2025.02.628
https://doi.org/10.32626/2308-5916.2025-27.40-57
https://doi.org/10.1109/ITSC55140.2022.9922498
https://medium.com/@nic/writing-user-stories-with-gherkin-dda63461b1d2
https://medium.com/@nic/writing-user-stories-with-gherkin-dda63461b1d2
https://leonnicholls.medium.com/the-ultimate-guide-to-google-gemini-gems-78182be784af
https://leonnicholls.medium.com/the-ultimate-guide-to-google-gemini-gems-78182be784af
https://doi.org/10.1109/ICEES61253.2024.10776884

	I. Introduction
	II. Context of the Study
	III. Methodology
	IV. Study Results
	A. Design of the FeatureSpecificationWriter Gem
	B. FeatureSpecificationWriter Gem usage on Agile Project

	V. Advantages and Constraints
	A. Advantages
	B. Constraints
	C. Novelty Compared to Classical Agile RE

	VI. Conclusions
	Acknowledgment
	References

