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Aнотація — Запропоновано модель вібраційного 
сигналу як періодично нестаціонарного випадкового 
процесу. Для виявлення прихованих періодичностей 
першого та другого порядку у вібраційному сигналі 
використано метод найменших квадратів (МНК). 
Запропоновано оцінку показника нестаціонарності, що 
базується на оцінках потужності гармонік функції 
математичного сподівання, що є визначальним для 
виявлення відмов та моніторингу обертових 
механізмів. 

Ключові слова — вібраційний сигнал; періодично 
нестаціонарний випадковий процес; математичне 
сподівання, кореляція; оцінки базової частоти; 
індикатор стану механізму. 

I.  ВСТУП 
Для обчислення функції математичного 

сподівання, кореляційної функції та їх коефіцієнтів 
Фур’є на основі експериментальних даних можна 
застосовувати методи статистичного аналізу 
періодично нестаціонарних випадкових процесів 
(ПНВП) – когерентне (синхронне) усереднення  
[1–10], компонентий метод [11], або метод 
найменших квадратів [12]. Придатність певного 
методу залежить від специфіки конкретних 
експериментальних даних, мети аналізу та 
необхідної точності, проте всі ці методи можна 
використовувати у випадку, коли відомий період 
нестаціонарності сигналу (базова частота). У процесі 
аналізу вібраційних сигналів обертових механізмів 
цей період у багатьох випадках можна розрахувати 
на основі технічних параметрів досліджуваного 
механізму. Однак значення періоду, отримані таким 

чином, недостатньо точні та можуть також 
змінюватися в реальних умовах. Для забезпечення 
необхідної ефективності аналізу ПНВП потрібно 
визначити період нестаціонарності на основі 
вибраної (і обмеженої у часі) реалізації сигналу. 

II. МЕТОДИ ВИЗНАЧЕННЯ ПЕРІОДІВ 
НЕСТАЦІОНАРНОСТІ ПЕРШОГО ТА ДРУГОГО ПОРЯДКУ У 

ВІБРАЦІЙНИХ СИГНАЛАХ 
Для визначення періоду нестаціонарності 

(прихованої періодичності) сигналу можна 
використовувати спеціальні функціонали [9-16], 
подібні до когерентних чи компонентних статистик, 
за винятком того, що замість істинного періоду у 
відповідних рівняннях використовується пробний 
період у проводиться сканування по тривалості 
пробного періоду у певній заданій області пошуку. 
Ці функціонали мають екстремальні значення в 
точках, які є асимптотично незміщеними та 
слушними оцінками величини періоду. Величини 

зміщення таких оцінок мають порядок ( )2O T −
, а 

дисперсії – порядок ( )3O T −
, де T – довжина 

реалізації сигналу. Для підвищення точності оцінки 
базової частоти у [12] було запропоновано 
використати метод найменших квадратів (МНК). 
Запропонований функціонал, що реалізує метод 
МНК для визначення оцінки базової частоти функції 
математичного сподівання (прихованої 
періодичності першого порядку) зі збільшенням 
довжини реалізації сигналу функціонал LS швидко 
прямує до: 
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2T  є довжина реалізації сигналу у часі, 
Th
K

=
 крок 

дискретизації, а 1L  є число гармонік базової частоти, 

взятих до розгляду. Точка максимуму 0̂f  
функціоналу (1) є асимптотично незміщеною і 
слушною оцінкою базової частоти функції 
математичного сподівання [12]. Значення ж 

функціоналу у точці максимуму 0̂f f=  приблизно 
рівне усередненій у часі сумі потужностей вибраних 
гармонік базової частоти: 
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 є асимптотично 
незміщені і слушні оцінки коефіцієнтів Фур’є 
функції математичного сподівання [17–19]. Далі, 
виходячи з статистичного означення: 
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сформуємо оцінку функції математичного 
сподівання на основі оцінок параметрів базової 
частоти 
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Вираз у (3) є інтерполяційною формулою для 
функції математичного сподівання для всіх 

1
0[0, ],t f −∈  якщо виконується наступна умова 

відсутності накладання (елайєзінгу) [11]: 
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Функція у (3) описує детерміновану складову 
сигналу. Її амплітудний та фазовий спектри 
визначаються виразами: 
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Далі представимо покрокову процедуру для 
визначення детермінованої складової сигналу 
вібрації: 

– На основі реального оцифрованого 

вібраційного сигналу ( )nhξ  формуємо статистику 
(2); 

– Підставляючи у (1) дані з (2), формуємо 
функціонал для числового аналізу визначення 

оцінки базової частоти. Число 1L  вибирається 

близьким до співвідношення m rf f , де mf — вища 

гранична частота спектру сигналу, а — rf  частота 
обертання приводу механізму; 

– Потім обчислюємо функціонал (1) для частот, 

що лежать у інтервалі [ ]1 2,f f , якй містить частоту 

обертання rf . Якщо ми хочемо знайти основну 
частоту з точністю до 10-3 Гц, то крок обчислення 

слід вибрати 
310  Гцf −∆ = ; 

– Точки максимуму (1) приймаємо за оцінку 
базової частоти функції математичного сподівання, 

а значення функціоналу у цій точці ( )1 0̂F f
 

приймаємо за оцінку потужності детермінованої 
складової коливань; 

– Підставляючи 0̂f f=  в (2), обчислюємо 
коефіцієнти Фур'є функції математичного 
сподівання, а також її амплітудний і фазовий спектри 
використавши (4); 

– Використовуючи інтерполяційну формулу (3), 
обчислюємо значення функції математичного 

сподівання в інтервалі 
ˆ0,t P ∈   , де 0̂ˆ 1P f= . 

Припускаючи, що ( ) ( )0 0
ˆ ˆˆˆ , ,m t f m t P f= +

, виділяємо 
стохастичну складову сигналу 

( ) ( ) ( )0̂ˆ ,nh nh m nh fξ = ξ −


. 
Тепер можна отримати оцінку дисперсії на 

інтервалі 
1

0̂0,t f − ∈   виходячи з ( )0̂ˆ 0, ,c
kR f
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. 
Спектральні характеристики функції 

математичного сподівання використовуються для 
визначення вібраційного стану обертового 
механізму. Відповідні індикатори стану також 
можуть бути сформовані на основі величин 
гармонік. Індикатор стану визначається 
відношенням суми усереднених за часом 
потужностей гармонік для детермінованих коливань 
до усередненої за часом потужності стохастичної 
складової: 
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Величини індикаторів 1I  можуть відрізнятися 
залежно від досліджуваного механізму, типу 
несправності та стадії її розвитку. 

III. ВИСНОВКИ 
Представлені методи виявлення та оцінювання 

параметрів прихованих періодичностей першого 
порядку у складі вібраційного сигналу як ПНВП. 
Значення параметрів, що описують структуру ПНВП 
коливань вібрацій, можуть свідчити про вібраційний 
стан обертового механізму. Для оцінювання 
вібраційного стану механізмів запропоновано 

індикатор першого порядку 1I , що визначається як 
відношення повної потужності гармонік 
детермінованих коливань до усередненої за часом 
потужності стохастичної частини. 
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