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Abstract—Проведено математичне моделювання 
дифузії домішки в багатофазному випадково 
неоднорідному тілі. Рівняння дифузії сформульовані 
для кожної фази, на випадкових міжфазних границях 
задані неідеальні умови контакту. Задачу зведено до 
інтегро-диференційного рівняння з випадковим 
ядром. Розв’язок отримано у вигляді ряду Неймана, 
усереднення проведено за ансамблем конфігурацій 
фаз. Розвинуто техніку діаграм Фейнмана для 
параболічних задач, отримано рівняння Дайсона для 
усередненого поля концентрації. У наближенні Бурре 
отримано рівняння масоперенесення для середовища з 
рівномірним розподілом фаз. 

Ключові слова— математичне моделювання, 
дифузія, багатофазне випадково неоднорідне 
середовище, усереднене поле, діаграма Фейнмана. 

I.  ВСТУП 

Діаграми Фейнмана є одним з базових 
інструментів сучасної науки: від квантової теорії 
поля до алгоритмічних методів обчислень [1,2,3]. У 
задачах математичного моделювання процесів масо-
перенесення [4] в стохастично неоднорідних багато-
фазних тілах діаграмні підходи дають узгоджений 
опис випадкових міжфазних взаємодій і статистики 
полів. Запропонований підхід є зручним для пере-
творень і аналізу і дає відмінні від гомогенізованих 
моделей результати, забезпечуючи системне враху-
вання випадкової геометрії. 

В роботі розвинуто техніку діаграм Фейнмана 
для моделювання дифузії домішки в багатофазному 
випадково неоднорідному тілі за неідеальних умов 
на випадкових межах контакту фаз. Отримано ін-
тегро-диференціальне рівняння з випадковим ядром 
та рівняння на усереднене за ансамблем конфі-
гурацій фаз поле концентрації, подане через масовий 
оператор. Крайова задача отримана та розв’язана 
для двофазного тіла за рівномірного розподілу фаз.  

II. ПОСТАНОВКА ЗАДАЧІ 

Розглянемо дифузію домішкової речовини у ба-
гатофазному випадково неоднорідному тілі, яке 
складається з 1+N  твердих, різних за густиною та 
коефіцієнтом дифузії фаз – матриці і включень до-
вільної форми. При цьому точна геометрична 
конфігурація фаз в області тіла невідома. Тоді коор-

динати розташування включень є невідомими, але 
приймаємо, що відомий закон їхнього імовірнісного 
розподілу [5]. Крім того, вважаємо, що об’ємна 
частка матриці є набагато більшою, ніж об’ємна 
частка включення, 0vv j <<  ( Nj ,...,1= ). Припуска-
ємо, що густина тіла та коефіцієнт дифузії є сталими 
в об’ємі кожної фази. 

Концентрації ( )trc j ,


 домішкової речовини в 

матриці (область 0Ω ) і включеннях (області jΩ , 
Nj ,...,1= ) визначаються з рівнянь дифузії [6], 

сформульованих для кожної фази окремо  
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Тут jρ  – густина речовини в області jΩ ; 

jjj Dd ρ=  – кінетичний коефіцієнт перенесення 

домішки в jΩ , jD  – коефіцієнт дифузії. 

Вважаємо, що на зовнішній границі тіла 
знаходиться матриця і задані такі початкові і 
граничні умови 
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На границях розділу областей 0Ω  та jΩ  
( Nj ,...,1= ) виконуються умови неідеального 
контакту щодо концентрації [6, 7] 

00
),(),(

+Γ∈−Γ∈
=

jljl rllrjj trcktrck 


;      (3) 

00
),(),(

+Γ∈−Γ∈
∇ρ=∇ρ

jlrllljlrjjj trcdtrcd 


.   (4) 

Тут Γ  – загальна границя контакту фаз, яка скла-
дається з границь контакту однозв’язних областей 
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областей у фазі j . 
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Тоді випадковими величинами є границі кон-
такту, тобто межі областей jiΩ , які є внутрішніми 
для тіла, що призводить до стохастичності поля 
концентрації дифундуючої речовини. 

III. РІВНЯННЯ МАСОПЕРЕНЕСЕННЯ ДЛЯ УСЬОГО ТІЛА 

Зведемо контактну задачу (1), (3), (4) до 
рівняння масоперенесення для тіла в цілому. 
Введемо в розгляд випадкову функцію просторових 
координат ),( trc
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Знаходимо ),( trc
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розривів 1-го роду (умови (3), (4)) на границях 
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Тоді маємо [8] 
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де Γr


 – радіус-вектор точок границі Γ ; Γ[...]  – 
стрибок функції на границі Γ ; )(⋅δ  – дельта-
функція Дірака. 

Додамо і віднімемо в рівнянні (5) детер-
мінований оператор ),(0 trL
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Таким чином отримано стохастичне диферен-
ціальне рівняння масоперенесення домішки для 
середовища з випадково розташованими включен-
нями у вигляді (5), а «збурене» диференціальне 
рівняння – (6) з випадковим оператором (7). 

IV. ІНТЕГРО-ДИФЕРЕНЦІАЛЬНЕ РІВНЯННЯ 
МАСОПЕРЕНЕСЕННЯ. РЯД НЕЙМАНА 

Розглядаючи праву частину рівняння (6) як 
джерела, будуємо інтегро-диференціальне рівняння, 
еквівалентне вихідній контактно-крайовій задачі 
(1), (2), (3), (4) [8] 
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 – розв’язок однорідної крайової задачі,  

),,,( ttrrG ′′  – функція Гріна, яка є розв’язком відпо-
відної детермінованої крайової задачі з точковим 
джерелом. 

Розв’язок інтегро-диференціального рівняння (8) 
шукаємо у вигляді інтегрального ряду Неймана, 
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V. ТЕХНІКА ДІАГРАМ ФЕЙНМАНА ДЛЯ ЗАДАЧІ 
МАСОПЕРЕНЕСЕННЯ У ВИПАДКОВО НЕОДНОРІДНОМУ 

СЕРЕДОВИЩІ 

Щоб дослідити структуру ряду (9), введемо 
графічне зображення його елементів у вигляді 
діаграм Р. Фейнмана 

 
Оператору ),( trLs ′′  співставимо вертикальний 

відрізок з крапками на кінцях 
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Функціям випадкового поля концентрації ),( trc


 
та поля концентрації в однорідному тілі ),( trch


 

співставимо діаграму-галочку та хвилясту лінію 
відповідно 

,    . 
Тоді ряд (9) у графічному представленні набуде 

такого вигляду 

 
Усереднимо випадкове поле концентрації (9) за 

ансамблем конфігурацій фаз. Зауважимо, що за 
означенням кореляційна функція дорівнює 
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−≡ψ . (34) 

Співставимо кумулянтній функції kψ  пунктирні 
лінії, причому її порядок  співпадає з порядком діа-
грами 

 
Введемо позначення для усередненого поля 

 
Для усередненого розв’язку отримаємо ряд 

 

 

 

… 

(10) 

Зазначимо, що відповідність між діаграмами 
Фейнмана та аналітичними виразами є взаємно 
однозначною. 

Деякі з діаграм, що входять у (10), містять в 
якості фрагментів діаграми нижчого порядку. Цим 
можна скористатися для скорочення запису. Суму 
ряду (10) виразимо через суму деякої нескінченної 
підпослідовності цього ж ряду. Для цього класи-
фікуємо діаграми, що входять у (10) [9]. 

Діаграма називається слабко зв’язаною, якщо її 
можна розділити на дві окремі діаграми, розірвавши 
деяку одну лінію G . У формулі (10) слабко 
зв’язаними є діаграми 3, 5-7, 10-13. Решта діаграм є 
сильно зв’язаними (1, 2, 4, 8, 9). Діаграми, що 
отримуються внаслідок розриву ліній G , в свою 
чергу можуть виявитися сильно або слабко зв’яза-
ними. Якщо серед «вторинних» діаграм є слабко 

зв’язані, то їх можна розбити на простіші діаграми. 
Продовжуючи цю процедуру, в результаті прийдемо 
до деякої кількості сильно зв’язаних діаграм. Число 
сильно зв’язаних діаграм, на які може бути розбита 
слабко зв’язана діаграма, є показником зв’язності 
вихідної діаграми. Для сильно зв’язаних діаграм 
приймемо показник зв’язності 1. 

У рядi (10) вiдберемо всi сильно зв’язанi 
дiаграми, тобто такi, якi неможливо роздiлити на двi 
окремi дiаграми, розiрвавши одну лiнiю G . Оскiль-
ки кожна з дiаграм починається лiнiєю G  i закiнчу-
ється хвилястою лiнiєю hc , то суму всiх сильно 
зв’язаних дiаграм можна подати у виглядi 

 
Тут ядро масового оператора можна подати в 
графічній формі 

 .(11) 

Групуємо суми всіх сильно зв’язаних діаграм з 
однаковим показником зв’язності. Тоді можна пода-
ти усереднене поле концентрації як діаграмний ряд 

 . 

Ряд (11) є розв’язком рівняння Дайсона 
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В загальному випадку оператор, а в частково-
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Σ  точно невідомий. В наближе-

ному випадку, наприклад, в якості цього оператора 
можна використати суму декількох перших членів 
ряду (11). У випадку наближення Бурре [9] маємо 
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Для наближення Бурре (13) рівняння (14) набуде 
вигляду  
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У випадку рівномірного розподілу N  фаз одер-
жимо рівняння для усередненого поля концентрації 
домішки в наближенні Бурре 
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Рівняння (15) разом із вихідними крайовими умова-
ми можна розв’язати аналітично. 

VI. ДИФУЗІЯ ДОМІШКИ У ДВОФАЗНОМУ ВИПАДКОВО 
НЕОДНОРІДНОМУ ШАРІ 

Розвязок крайової задачі (15) для двофазного 
тіла ( 2=N ) з вихідними крайовими умовами (2) 
знайдено у вигляді [6] 
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Проілюструємо розподіли усередної концентра-
ції домішкових частинок, що мігрують в двофазно-
му шарі. Числовi розрахунки проводились у безроз-
мiрних змiнних [10] 

0zz=ξ ,    2
0zdt ρ=τ . 

У якості базових використано такі значення 
параметрів: 10 =ρ , 1.11 =ρ , 10 =d , 5.01 =d  і 5.1 , 

1.01 =v , 10 =ξ , 1~
1 =c , 05.0~

2 =c . 
Рис. 1 ілюструє розподіли усередненої за ансам-

блем конфігурації фаз концентрації 1
~),( сc τξ  

(криві a, суцільні лінії), концентрації в шарі з усе-
редненими за об’ємом характеристиками (криві b, 
штрих-пунктирні лінії) і концентрації в однорідно-
му шарі з характеристиками матриці (криві c, штри-
хові лінії) в моменти часу 01.0=τ  (криві 1), 

05.0=τ  (криві 2) і 25.0=τ  (криві 3). Тут і надалі, 
якщо не зазначено інше, рис. a побудовані для 

5.01 =d , а рис. b для 5.11 =d  
 

 
Рисунок 1. Розподілі усередненої концентрації дифундуючих 

частинок для різних моделей в різні моменти безрозмірного часу 
для  0.51 =d  (a) та 5.11 =d  (b) 

Зазначимо, що застосування моделі дифузії до-
мішок для розрахунку усередненої за ансамблем 
конфігурацій фаз концентрації у двофазному шарі з 
рівномірним розподілом фаз у тілі призводить до 
результатів, відмінних від отриманих з вико-
ристанням моделей дифузії з характеристиками 
матриці, чи усередненими за об’ємом (рис. 1). Зі 
збільшенням часу протікання процесу дифузії 
функції концентрації за всіма моделями зростають, 
доки не вийдуть на стаціонарний режим (криві 3b,c 
на рис. 1а і криві 3a на рис. 1b), причому різниця 
між ними зменшується. 

VII. ВИСНОВКИ 
Отже проведено моделювання процесу 

масоперенесення частинок домішки у багатофазному 
випадково неоднорідному тілі. На міжфазних границях 
задано неідеальні умови контакту щодо концентрації 
домішкової речовини. На основі рівняння балансу 
маси для усього тіла отримано стохастичне 
диференціальне рівняння масоперенесення домішки 
для тіла в цілому, оператор якого містить стрибки 
шуканої функції та її похідної на випадкових 
міжфазних границях.  

Отриманій крайовій задачі поставлено у 
відповідність інтегро-диференціальне рівняння з 
випадковим ядром, розв’язок якого побудований у 
вигляді інтегрального ряду Неймана. Для дослідження 
структури цього ряду введено графічне зображення 
його елементів у вигляді діаграм Р. Фейнмана. 
Проведено усереднення випадкового поля 
концентрації за ансамблем конфігурацій фаз. З 
використанням топологічних ознак діаграм усеред-
нений ряд Неймана виражено через суму певної 
нескінченної підпослідовності цього ж ряду. Запро-
поновано класифікацію діаграм з групуванням на 
сильно- і слабко- зв’язані діаграми. Ядро масового 
оператора побудовано на основі суми всіх 
сильнозв’язаних діаграм. 

Використання техніки діаграм Фейнмана 
дозволило отримати інтегро-диференціальне рівняння 
Дайсона для усередненого поля концентрації. 
Сконструйовано спрощений оператор рівняння 
Дайсона у випадку наближення Бурре. 
Диференціальне рівняння на усереднене поле 
концентрації сконкретизовано для випадку N фаз, 
рівномірно розподілених в області тіла. 
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