0 Modeling, control &

information technologies

Remote Control System for a VIOL UAV Stand
with Computer Vision Elements

Oleh Tsukanov

National University of Water and Environmental
Engineering, Rivne, Ukraine

tsukanov_ak23@nuwm.edu.ua

Abstract — This work presents a remote control system
for a vertical take-off and landing unmanned aerial vehicle
(VTOL UAYV) stand, implemented using the ESP32
microcontroller. The system provides control of actuators
and aviation lights through a local web interface via a Wi-
Fi connection. Additionally, a visualization subsystem was
developed, including a camera with remote positioning
capabilities and a human silhouette recognition algorithm
using computer vision tools. The processed video stream is
displayed on the web interface, with detected objects
automatically highlighted by graphical bounding boxes.
The proposed solution integrates hardware and software
components, offering intuitive control and basic computer
vision functions to enhance system functionality.

Keywords — UAV; remote control system; computer
vision; web interface.

INTRODUCTION

Modern unmanned aerial vehicles (UAVs) are
increasingly used in various fields. This creates a need
for solutions that allow the study of control algorithms,
data processing, and integration with user interfaces.

Today, special attention is given to computer vision
systems for real-time object detection and tracking.
Combining a camera with remote positioning
capabilities and human silhouette recognition enables
enhanced monitoring, particularly through web
interfaces.

PROBLEM SOLUTION

This work presents the development of a UAV stand
based on the ESP32 microcontroller and an ARM Linux
computer, which performs human silhouette detection on
video frames and streams the results to the user in an
intuitive and convenient format.

The stand [1] was additionally equipped with a
microprocessor board based on the ESP32
microcontroller, which implements a local HTTP server.
The user connects to the local server via a Wi-Fi access
point created by the built-in Wi-Fi module of the ESP32.
After connecting to the Wi-Fi access point, the user can
either open a webpage in a browser using the IP address
of the Wi-Fi module or scan a QR code to access the
local HTTP server link. This opens a graphical web
interface, from which the user can control the stand. To
simplify user access to the UAV control system, a
Captive Portal mechanism was implemented. After

https://doi.org/10.31713/MCIT.2025.115

Dmytro Reut
National University of Water and Environmental
Engineering, Rivne, Ukraine
d.t.reut@nuwm.edu.ua

connecting to the Wi-Fi access point created by the
ESP32, the user is automatically redirected to the local
web interface without the need to manually enter the IP
address. This approach improves usability, as the
operator gains immediate access to the control interface.

The web interface was implemented as a web page
using HTML and CSS. Within this interface, the user can
control the ailerons through an interactive joystick (Fig.
1), which simulates the operation of an aircraft control
yoke. Additionally, the interface includes buttons for
switching the aircraft navigation lights on and off,
buttons for activating or deactivating the vertical take-
off motors, a reset button that returns all elements to their
default position, and a slider for adjusting both the speed
and direction of the thrust motor. The interface also
provides dedicated controls for camera positioning,
enabling the user to rotate the onboard camera via servo
drives in both horizontal and vertical directions.

ApoH
KoHTponep

KepyBaHHA YAW (servo3,
servo4d)

@

KepyBaHHA Kamepoio

@

AKTUBYBATH KOHTPO/Ib

AEAKTMBYBATW KOHTPO/Ib

KepyBaHHA EnepoHamu

| 3ANYCK MOTOPIB
3YMUHKA MOTOPIS

| cxupannn

~ YBIMKHYTH BOTHI

BUMKHYTH BOTHI

Fig. 1. User interface

Furthermore, the system was extended with an
ARM-based Linux computer (Rockchip RK3188, 2 GB
RAM) responsible for real-time video processing. A
Python script, executed as a daemon, performs two
primary tasks: (1) capturing and processing images from
a USB camera, and (2) streaming the processed video
over a local Flask-based HTTP server.[2] For image
analysis, the system employs the OpenCV library with a

https://doi.org/10.31713/MCIT.2025.115
mailto:tsukanov_ak23@nuwm.edu.ua
mailto:d.t.reut@nuwm.edu.ua

Modeling, control and information technologies — 2025

Histogram of Oriented Gradients (HOG) descriptor for
pedestrian detection. [3]

Video Processing Workflow:

e The video stream from the onboard camera is
processed on an ARM-based embedded Linux
computer. The image-processing script is
implemented in Python using the OpenCV
library. The workflow consists of the following
steps:

e Capturing frames from the USB camera.

e Downscaling the frames to optimize processing
speed.

e Applying the HOG (Histogram of Oriented
Gradients) descriptor for human detection [1].

e Drawing bounding boxes around detected
objects.

e Encoding the processed frames into an MJPEG
stream for transmission to the web interface.

As a result, the operator receives both control
functionality and real-time visual feedback within a
single interface. The script is executed in daemon mode
to ensure continuous operation, while a Flask-based
server streams the video via the /video_feed route.

In addition, servo-based camera positioning is
integrated, enabling dynamic adjustment of the field of
view and object tracking.

Figure 2 presents the structural diagram of the remote
control system for the VTOL UAV stand, implemented
on a controller based on the ESP32 microcontroller. The
red, green, and white LEDs, serving as aviation
navigation lights, are switched on through transistors
upon command from the microcontroller.

User device
rrrrrrrr

Alleron and camera
positioning servos

Server
LED navigation fights Transistors Microntroller
Propeller motor
Propeller motors H ers

‘ Camera ‘

Power supply

Fig. 2 Structural diagram

The current through the LEDs is limited by series-
connected resistors. The vertical lift propeller drives are
controlled via L298N motor driver ICs. PWM control
signals for the servos of the ailerons and flap-ailerons are
provided directly from the ESP32 microcontroller board.
A camera mounted on a servo gimbal is also controlled
by the ESP32, allowing remote positioning to adjust the
viewing angle.

For the UAV stand (fig. 3), actuators were selected
based on load:

e SG90 micro servo — camera gimbal. Torque
~1.8 kg-cm, speed 0.12 s/60°, supply voltage
4.8-6 V, weight 9 g.

e MGI996R servo — wing ailerons. Torque 9.4
kg-cm, speed 0.14 s/60°, supply voltage 4.8—7.2
V, weight 55 g.

e MGI0S servo — tail ailerons. Torque 2.2 kg-cm,
speed 0.11 s/60°, supply voltage 4.8-6 V,

weight 13 g.
e [298N motor driver controls propulsion
motors, supply voltage 5-35 V, current

2 A/channel, PWM.

Fig. 3. VTOL UAYV stand

CONCLUSION

The developed remote control system for the VTOL
UAV stand, based on an ESP32 server using a local Wi-
Fi network and a web interface, demonstrates stable
operation provided the user remains within sufficient
Wi-Fi signal range (near the UAV). The system is
intuitive and easy to operate. Integration of motor drivers
ensures smooth speed regulation of the propellers.

Additionally, the video stream from the UAV’s
onboard camera is transmitted via a ARM-based
embedded Linux device connected to the system. The
video feed is processed and displayed in real time within
the same web interface used for control, providing the
operator with both telemetry and visual feedback in a
single environment.

REFERENCES

[1] Tsukanov O.S., Reut D.T. CHCTEMA JIUCTAHLIMHOIO
KEPYBAHHSA OIPOHOM YEPE3 BEB-CEPBEP HA ESP32
[Remote Drone Control System via ESP32 Web Server]. Zbirnyk
tez dopovidei Vseukrainskoi naukovo-praktychnoi konferentsii
zdobuvachiv vyshchoi osvity ta molodykh vchenykh "VODA.
ZEMLYA. ENERGETYKA", Rivne, 15 May 2025. Rivne:
NUWEE, 2025. [in Ukrainian]

[2] Pallets, “Flask,” GitHub repository,
https://github.com/pallets/flask

[3] OpenCV, "HOG Descriptor and Object Detection,"
Documentation, [Online]. Available:

https://docs.opencv.org/4.x/d5/d33/structcv_1_1HOGDescriptor
.html

