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Abstract— The long-term integrity of geoenvironmental 
containment systems is critical for preventing groundwater 
contamination, while conventional monitoring is only 
reactive. This work addresses the need for proactive, 
predictive monitoring by deriving a novel integral 
conjugation boundary condition for a smart geobarrier. 
This condition incorporates real-time sensor data through 
a Newtonian nudging data assimilation term, providing a 
mathematically rigorous mechanism to continuously steer 
a physical model toward observed reality. As an example of 
application, a boundary value problem for the process of 
filtrational consolidation is formulated.  

Keywords—mathematical modeling, filtrational 
consolidation, conjugation condition, smart geobarrier, 
data assimilation. 

I. INTRODUCTION 
The management of waste from municipal, industrial, 

and mining activities presents a significant environmental 
engineering challenge. Critical infrastructure like 
landfills and wastewater lagoons pose a substantial threat 
to groundwater resources. The primary defense is the 
geoenvironmental containment system, traditionally 
relying on passive barriers like compacted clay liners and 
high-density polyethylene (HDPE) geomembranes.    

However, the long-term integrity of these passive 
systems is uncertain, as they are susceptible to 
degradation and defects [1]. Conventional monitoring is 
reactive, confirming failures only after contamination has 
occurred, at which point remediation is costly and often 
ineffective. In the long term, this approach cannot provide 
safe and sustainable solution. 

The recently introduced "smart" or "intelligent" 
geobarriers have embedded sensing capabilities, allowing 
for continuous, real-time monitoring. They perform their 
traditional functions of separation, filtration, drainage, 
reinforcement, and containment, while simultaneously 
acting as integrated sensor networks. This dual 
functionality enables them to transmit critical 
information about the system's physical state, such as 
strain, stress, and temperature. This approach avoids the 
need for discrete, intrusive instrumentation [2].  

Sensing capability of smart geobarriers is often 
achieved by embedding electrically conductive materials, 
that would change properties drastically if any leak in the 
geobarrier occurs. More advanced technology, called 

fiber-optic sensing, uses Fiber Bragg Gratings (FBG) – 
periodic variations in the refractive index of an optical 
fiber. Such optical sensors reflect light at a specific 
wavelength, which is highly sensitive to mechanical 
strain and temperature. A key advantage is multiplexing, 
where hundreds of FBG sensors can be placed along a 
single fiber for quasi-distributed sensing [3]. The fiber-
optics sensors can be applied to detect strain, water 
pressure and even concentration of chemicals [4].  

Moreover, the presence of multiple sensors allows for 
more precise monitoring and application of this data to 
predictive modeling. Together with adequate 
mathematical models and data assimilation techniques, 
they provide a framework to merge real-time sensor data 
with model predictions, creating a dynamically updated 
understanding of the system's state.  

However, accurate model representation of this 
geobarriers is critical for further implementation of such 
intelligent systems. As a kind of thin inclusion, smart 
geobarrier would require complex conjugation conditions 
for modeling, similar to the conditions proposed in [5, 6].  
Further incorporation of data assimilation term into this 
conjugation conditions would ensure the accurate and 
practical implementation of sensor data in the 
mathematical model. 

II. NEWTONIAN NUDGING ASSIMILATION 
Data Assimilation (DA) is a set of mathematical 

techniques designed to produce an optimal estimate of the 
state of a dynamic system by combining information 
from a numerical model and observations. The numerical 
model provides a physically consistent description of the 
system, but it is imperfect due to errors in its initial 
conditions, parameters, and physical approximations. 
Observations from sensors provide direct information 
about the real state of the system, but they are typically 
sparse, indirect, and contain measurement errors. The 
purpose of DA is to merge these two incomplete and 
uncertain sources of information, decreasing uncertainty 
and improving the model's forecasting capability [7].    

The use of data assimilation is especially 
advantageous for refining the conjugation conditions for 
geobarriers. It would allow to update the model with 
accurate sensor information, while sustaining the 
continuity of model variable fields and accounting for 
possible measurement flaws. 
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The method we chose for this problem, called 
Newtonian nudging or Newtonian relaxation, is a 
continuous data assimilation method that gently steers, or 
"nudges," a model's simulation toward observations as it 
runs. Instead of solving a large-scale optimization 
problem like variational methods, nudging adds a non-
physical relaxation term directly into the model's 
prognostic equations [8]. In general terms, its 
implementation can be described with the following 
equation: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐹𝐹(𝑢𝑢,𝑋𝑋, 𝑡𝑡) + 𝐺𝐺 ∙ 𝑊𝑊(𝑋𝑋, 𝑡𝑡) ∙ (𝑢𝑢𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑢𝑢), (1) 

where 𝐹𝐹(𝑢𝑢,𝑋𝑋, 𝑡𝑡) represents the original model physics; 
(𝑢𝑢𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑢𝑢) is the innovation, or the difference between 
the observation and the model's current state; G is the 
nudging coefficient, which determines the strength of the 
correction and represents a relaxation time scale; and 
𝑊𝑊(𝑋𝑋, 𝑡𝑡) represents weighting functions that localize the 
nudging's influence in space and time [9].    

At each time step, the nudging term applies a 
correction proportional to the difference between the 
model state and the observations, continuously pushing 
the simulation closer to reality. This approach is 
computationally much simpler than variational methods, 
as it does not require the development of a complex 
adjoint model.    

III. INTEGRAL CONJUGATION CONDITION WITH DATA 
ASSIMILATION TERM 

For derivation of this condition, we consider a low-
permeability geobarrier ω of small thickness d, installed 
in the soil medium. The geobarrier has sensing 
capabilities that allow to observe strain, which can be 
used to estimate soil water pressure head hobs. The water 
transfer inside the geobarrier can be described with the 
equation of elastic filtration. With addition of the 
Newtonian nudging term, the governing equation is as 
follows: 

𝛽𝛽𝜔𝜔(𝑡𝑡)
𝜕𝜕ℎ
𝜕𝜕𝜕𝜕

=
𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑘𝑘𝜔𝜔(𝑡𝑡)

𝜕𝜕ℎ
𝜕𝜕𝜕𝜕
� − 

−𝐺𝐺𝐺𝐺(𝜉𝜉, 𝑡𝑡)(ℎ𝑜𝑜𝑜𝑜𝑜𝑜 − ℎ), 0 < 𝜉𝜉 < 𝑑𝑑, 𝑡𝑡 > 0, 
(2) 

ℎ(0, 𝑡𝑡) = ℎ−(𝑡𝑡),ℎ(𝑑𝑑, 𝑡𝑡) = ℎ+(𝑡𝑡), 𝑡𝑡 > 0.      (3) 

Here, h is pressure head, ℎ+  and ℎ−  are pressure head 
values on the boundaries of the inclusion, 𝑘𝑘𝜔𝜔(𝑡𝑡) is the 
barrier hydraulic conductivity, 𝛽𝛽𝜔𝜔(𝑡𝑡) = 𝛾𝛾𝑎𝑎𝜔𝜔 (1 + 𝑒𝑒𝜔𝜔)⁄ , 
where  𝛾𝛾  is specific weight of the pore water, 𝑎𝑎𝜔𝜔  is 
compressivity of the porous geobarrier material, 
𝑒𝑒𝜔𝜔 = 𝑛𝑛𝜔𝜔 (1 − 𝑛𝑛𝜔𝜔)⁄  is porosity coefficient, 𝑛𝑛𝜔𝜔  is 
porosity of the geobarrier. For simplicity, we consider a 
one-dimensional problem here, but the same can be 
applied to the higher-dimensional cases. 

Integrating the equation (2), we get 

𝑘𝑘𝜔𝜔(𝑡𝑡)
𝜕𝜕ℎ
𝜕𝜕𝜕𝜕

= 𝛽𝛽𝜔𝜔(𝑡𝑡)�
𝜕𝜕ℎ
𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑 −

𝜉𝜉

0
 

−� 𝐺𝐺𝐺𝐺(𝑧𝑧, 𝑡𝑡)(ℎ𝑜𝑜𝑜𝑜𝑜𝑜 − ℎ)𝑑𝑑𝑑𝑑
𝜉𝜉

0
+ ℎ1, 

where ℎ1 is a unknown function that may depend on time 
t. Than 

ℎ(𝜉𝜉, 𝑡𝑡) =
𝛽𝛽𝜔𝜔(𝑡𝑡)
𝑘𝑘𝜔𝜔(𝑡𝑡)

� �
𝜕𝜕ℎ
𝜕𝜕𝜕𝜕

𝜍𝜍

0
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 −

𝜉𝜉

0
 

−
1

𝑘𝑘𝜔𝜔(𝑡𝑡)
� � 𝐺𝐺𝐺𝐺(𝑧𝑧, 𝑡𝑡)(ℎ𝑜𝑜𝑜𝑜𝑜𝑜 − ℎ)

𝜍𝜍

0
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 +

𝜉𝜉

0

+
𝜉𝜉

𝑘𝑘𝜔𝜔(𝑡𝑡)
ℎ1(𝑡𝑡) + ℎ2(𝑡𝑡), 

(4) 

where ℎ2 is also an unknown function that only depends 
on time. Further, from (4) and boundary conditions (3) 
we have 

ℎ(0, 𝑡𝑡) = ℎ2 = ℎ−, 

ℎ(𝑑𝑑, 𝑡𝑡) =
𝛽𝛽𝜔𝜔(𝑡𝑡)
𝑘𝑘𝜔𝜔(𝑡𝑡)

� �
𝜕𝜕ℎ(𝑧𝑧, 𝑡𝑡)
𝜕𝜕𝜕𝜕

𝜍𝜍

0
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 −

𝑑𝑑

0
 

−
1

𝑘𝑘𝜔𝜔(𝑡𝑡)
� � 𝐺𝐺𝐺𝐺(ℎ𝑜𝑜𝑜𝑜𝑜𝑜 − ℎ)

𝜍𝜍

0
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 +

𝜉𝜉

0

+
𝑑𝑑

𝑘𝑘𝜔𝜔(𝑡𝑡)
ℎ1(𝑡𝑡) + ℎ2(𝑡𝑡) = ℎ+. 

(5) 

For the system of equations (5), we have 

ℎ1 =
𝑘𝑘𝜔𝜔(𝑡𝑡)
𝑑𝑑

�ℎ+ − ℎ− −
𝛽𝛽𝜔𝜔(𝑡𝑡)
𝑘𝑘𝜔𝜔(𝑡𝑡)

� �
𝜕𝜕ℎ(𝑧𝑧, 𝑡𝑡)
𝜕𝜕𝜕𝜕

𝜍𝜍

0
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 +

𝑑𝑑

0
 

+
1

𝑘𝑘𝜔𝜔(𝑡𝑡)
� � 𝐺𝐺𝐺𝐺(ℎ𝑜𝑜𝑜𝑜𝑜𝑜 − ℎ)

𝜍𝜍

0
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑑𝑑

0
�. 

The difference (ℎ+ − ℎ−) , further denoted [ℎ], is the 
pressure head jump that occurs when the water is passing 
through the inclusion.  

Applying this to the the problem (1), (2) we have 

ℎ(𝜉𝜉, 𝑡𝑡) = ℎ− +
𝛽𝛽𝜔𝜔(𝑡𝑡)
𝑘𝑘𝜔𝜔(𝑡𝑡)

� �
𝜕𝜕ℎ
𝜕𝜕𝜕𝜕

𝜍𝜍

0
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 −

𝜉𝜉

0
 

−
1

𝑘𝑘𝜔𝜔(𝑡𝑡)
� � 𝐺𝐺𝐺𝐺(𝜍𝜍, 𝑡𝑡)(ℎ𝑜𝑜𝑜𝑜𝑜𝑜 − ℎ)

𝜍𝜍

0
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 +

𝜉𝜉

0
 

+
𝜉𝜉

𝑘𝑘𝜔𝜔(𝑡𝑡)
ℎ1. 

For the final derivation of the conjugation condition, 
we need to use the soil flux rate u. According to Darcy’s 
law, we have 

𝑢𝑢 = −𝑘𝑘𝜔𝜔(𝑡𝑡)
𝜕𝜕ℎ
𝜕𝜕𝜕𝜕

= −𝛽𝛽𝜔𝜔(𝑡𝑡)�
𝜕𝜕ℎ
𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑 +

𝜉𝜉

0
 

+� 𝐺𝐺𝐺𝐺(ℎ𝑜𝑜𝑜𝑜𝑜𝑜 − ℎ)𝑑𝑑𝑑𝑑
𝜉𝜉

0
− ℎ1. 

(6) 

 

Thus, we get the following conjugation condition for 
non-ideal contact with a nudging term: 

𝑢𝑢− = 𝑢𝑢|𝜉𝜉=0 = −
𝑘𝑘𝜔𝜔(𝑡𝑡)
𝑑𝑑

�[ℎ] −
𝛽𝛽𝜔𝜔(𝑡𝑡)
𝑘𝑘𝜔𝜔(𝑡𝑡)

× 

× � �
𝜕𝜕ℎ(𝑧𝑧, 𝑡𝑡)
𝜕𝜕𝜕𝜕

𝜍𝜍

0
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑑𝑑

0
+ 

(7) 
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+
1

𝑘𝑘𝜔𝜔(𝑡𝑡)
� � 𝐺𝐺𝐺𝐺(ℎ𝑜𝑜𝑜𝑜𝑜𝑜 − ℎ)

𝜍𝜍

0
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑑𝑑

0
� ; 

𝑢𝑢+ = 𝑢𝑢|𝜉𝜉=𝑑𝑑 = −𝛽𝛽𝜔𝜔(𝑡𝑡)�
𝜕𝜕ℎ
𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑 +

𝑑𝑑

0
 

+� 𝐺𝐺𝐺𝐺(𝑧𝑧, 𝑡𝑡)(ℎ𝑜𝑜𝑜𝑜𝑜𝑜 − ℎ)𝑑𝑑𝑑𝑑 −
𝑑𝑑

0
 

−
𝑘𝑘𝜔𝜔(𝑡𝑡)
𝑑𝑑

�[ℎ] −
𝛽𝛽𝜔𝜔(𝑡𝑡)
𝑘𝑘𝜔𝜔(𝑡𝑡)

� �
𝜕𝜕ℎ(𝑧𝑧, 𝑡𝑡)
𝜕𝜕𝜕𝜕

𝜍𝜍

0
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑑𝑑

0
+ 

+
1

𝑘𝑘𝜔𝜔(𝑡𝑡)
� � 𝐺𝐺𝐺𝐺(ℎ𝑜𝑜𝑜𝑜𝑜𝑜 − ℎ)

𝜍𝜍

0
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑑𝑑

0
�. 

(8) 

IV. APPLICATION TO A BOUNDARY VALUE PROBLEM 
The conjugation conditions (7), (8) can be used in the 

mathematical model to simulate the processes in the soil 
with smart geobarrier installed. For example, consider a 
soil layer of thickness l with a geobarrier ω of thickness 
d, 𝑑𝑑 ≪ 𝑙𝑙, located on depth 𝑥𝑥 = 𝜉𝜉, where material of the 
thin inclusion ω has characteristics different from that of 
the soil medium. Applying the filtrational consolidation 
equation according to [10], we get the following 
boundary value problem:  

𝛾𝛾𝛾𝛾
1 + 𝑒𝑒

𝜕𝜕ℎ
𝜕𝜕𝜕𝜕

=
𝜕𝜕
𝜕𝜕𝜕𝜕

�𝑘𝑘(𝑡𝑡)
𝜕𝜕ℎ
𝜕𝜕𝜕𝜕
� , 𝑥𝑥 ∈ 𝛺𝛺1 ∪ 𝛺𝛺2, 𝑡𝑡 > 0, (9) 

ℎ(𝑥𝑥, 𝑡𝑡)|𝑥𝑥=0 = 0,𝑢𝑢(𝑥𝑥, 𝑡𝑡)|𝑥𝑥=𝑙𝑙 = 0, 𝑡𝑡 > 0, (10) 

ℎ(𝑥𝑥, 0) = ℎ0(𝑥𝑥), 𝑥𝑥 ∈ 𝛺𝛺1��� ∪ 𝛺𝛺2����, (11) 

𝑢𝑢− = 𝑢𝑢|𝑥𝑥=𝜉𝜉−0 = −
𝑘𝑘𝜔𝜔(𝑡𝑡)
𝑑𝑑

�[ℎ] −
𝛽𝛽𝜔𝜔(𝑡𝑡)
𝑘𝑘𝜔𝜔(𝑡𝑡)

× 

× � �
𝜕𝜕ℎ(𝑧𝑧, 𝑡𝑡)
𝜕𝜕𝜕𝜕

𝜍𝜍

0
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑑𝑑

0
+ 

+
1

𝑘𝑘𝜔𝜔(𝑡𝑡)
� � 𝐺𝐺𝐺𝐺(ℎ𝑜𝑜𝑜𝑜𝑜𝑜 − ℎ)

𝜍𝜍

0
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑑𝑑

0
�, 

(12) 

𝑢𝑢+ = 𝑢𝑢|𝑥𝑥=𝜉𝜉+0 = −𝛽𝛽𝜔𝜔(𝑡𝑡)�
𝜕𝜕ℎ
𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑 +

𝑑𝑑

0
 

+� 𝐺𝐺𝐺𝐺(𝑧𝑧, 𝑡𝑡)(ℎ𝑜𝑜𝑜𝑜𝑜𝑜 − ℎ)𝑑𝑑𝑑𝑑 −
𝑑𝑑

0
 

−
𝑘𝑘𝜔𝜔(𝑡𝑡)
𝑑𝑑

�[ℎ] −
𝛽𝛽𝜔𝜔(𝑡𝑡)
𝑘𝑘𝜔𝜔(𝑡𝑡)

� �
𝜕𝜕ℎ(𝑧𝑧, 𝑡𝑡)
𝜕𝜕𝜕𝜕

𝜍𝜍

0
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 +

𝑑𝑑

0
 

+
1

𝑘𝑘𝜔𝜔(𝑡𝑡)
� � 𝐺𝐺𝐺𝐺(ℎ𝑜𝑜𝑜𝑜𝑜𝑜 − ℎ)

𝜍𝜍

0
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑑𝑑

0
�. 

(13) 

In the formulation above, 𝛺𝛺1 = (0; 𝜉𝜉),𝛺𝛺2 = (𝜉𝜉; 𝑙𝑙) , 
0 < 𝜉𝜉 < 𝑙𝑙, ℎ0(𝑥𝑥) is a set function, γ is specific weight of 
the pore water, a is soil compressivity coefficient,  
𝑒𝑒 = 𝑛𝑛 (1 − 𝑛𝑛)⁄  is soil porosity coefficient, n is soil 
porosity, k and 𝑘𝑘𝜔𝜔 are hydraulic conductivities of the soil 
and the geobarrier, respectively, u is soil flux rate 
determined according to (6), 𝑢𝑢+  and 𝑢𝑢−  are water flux 
rates at 𝑥𝑥 = 𝜉𝜉 − 0 and 𝑥𝑥 = 𝜉𝜉 + 0, respectively. 

V. CONCLUSION 
In this study, we proposed a theoretical framework for 

integrating real-time sensor data into the mathematical 
modeling of smart geobarrier systems. The derived 
integral conjugation boundary condition augmented with 
a Newtonian nudging term provides a direct and 
physically consistent method for assimilating 
observational data, allowing a numerical model to be 
continuously corrected by measurements. The utility of 
this condition was demonstrated by formulating a 
boundary value problem for filtrational consolidation. 

Subsequent work should focus on numerical 
validation through synthetic experiments, conducting a 
parametric analysis of the nudging coefficient. This 
foundational research provides an important step toward 
creating a "digital twin" for smart geobarriers, bridging 
the gap between advanced sensor technology and 
predictive mathematical modeling. 
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