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Анотація — Проведено огляд основних підходів до 
математичного моделювання процесів у пристроях 
напівпровідникової електроніки з урахуванням 
багатомасштабності та граничних шарів. Окреслено 
перспективи розвитку мультифізичних моделей із 
використанням методів теорії збурень, алгоритмів 
машинного навчання для потреб сучасної 
напівпровідникової промисловості. 

Ключові слова — кіберматематичне моделювання, 
штучні нейронні мережі, задачі математичної фізики, 
метод збурень, сингулярно збурена задача, інтегральна 
p-i-n-структура. 

I.  ВСТУП 
Сучасний етап розвитку прикладної 

математики та інформаційних технологій 
характезується інтеграцію класичних методів 
моделювання з інструментами штучного інтелекту. 
Зростання рівня складності процесів у 
напівпровідниковій електроніці, зумовлене 
мультифізичними нелінійними взаємодіями 
потребує моделей, що поєднують високу точність та 
обчислювальну ефективність. 

Одним із перспективних підходів до 
вирішення цієї проблеми є кіберматематичне 
моделювання – поєднання строгого математичного 
апарату, зокрема асимптотичних методів [1, 2] з 
алгоритмами машинного навчання [3]. На відміну 
від традиційних методів, таке поєднання забезпечує 
адаптивність моделей, інтеграцію експерименталь-
них даних і збереження фізичної узгодженості. 
Особливу роль відіграють нейронні мережі, зокрема 
Physics-Informed Neural Networks [4], які об’єднують 
фундаментальні моделі з експериментальними 
даними навіть у випадку, коли дані неповні або 
зашумлені. 

Мета роботи – огляд сучасних засобів 
кіберматематичного моделювання для вирішення 
задач напівпровідникової електроніки (зокрема p-i-
n-структур). 

II. ПРОБЛЕМАТИКА ПРЕДМЕТНОЇ ОБЛАСТІ 
Застосування кіберматематичного підходу у 

моделюванні характеристик напівпровідникових 
пристроїв проілюструємо на прикладі плазмових 
діодів (p-i-n-структур) [5]. Особливість таких 
пристроїв полягає у тому, що електрофізичні 
властивості його активної області (і-області), яка 
знаходиться між шарами напівпровідникових 
матеріалів з електронною (n) та дірковою (p) 
провідністю, змінюється у залежності від керуючого 
струму, що протікає через p-i-n-структуру. При 
протікання зарядів через зони n-i- та p-i-контактів 
(інжекції) в активній області внаслідок дифузійно-
дрейфових, рекомбінаційних, теплових процесів 
формується електронно-діркова плазма, яка і 
визначає властивості пристрою [5]. 

В основу математичної моделі характеристик 
p-i-n-структур покладено стаціонарні/нестаціонарні 
рівняння неперервності струмів електронів і дірок, 
Пуассона, теплопровідності з відповідними 
граничними умовами. Для прикладу [6], у 
найпростішому випадку (одновимірний, 
стаціонарний, виконуються умови теплової 
рівноваги) математична модель подається 
наступною системою ЗДР: 
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де E(x), n(x), p(x) – шукані функції напруженості 
електричного поля, розподілів концентрацій 
електронів і дірок в і-області p-i-n-діода відповідно 
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діелектрична стала; ε0 – діелектрична стала; w – 
характерний розмір активної області діода; e – заряд 
електрона; Ni - концентрація носіїв заряду у 
власному напівпровіднику; k – стала Больцмана; T - 
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коефіцієнти дифузії дірок та електронів відповідно; 
*
nτ , *

pτ  - характерні часи рекомбінації носіїв заряду в 
об’ємі активної області (у даній математичній моделі 
є сталими, які залежать, як і коефіцієнти дифузії, від 
обраного матеріалу напівпровідника); Nd – профіль 
легування; J – густина струму інжекції; U – різниця 
потенціалів, прикладена до структури; γn, γp - 
коефіцієнти рекомбінації носіїв заряду на контактах. 

Задачі моделювання відзначаються 
мультифізичністю, різними часовими масштабами 
процесів (наведений приклад постановки задачі (1)-
(3) цього не ілюструє), нелінійністю, що ускладнює 
їх розв’язання. Використання лише класичних 
чисельних методів часто вимагає значних ресурсів, 
тоді як асимптотичні та рекурентні підходи 
дозволяють зменшити обчислювальні витрати і 
водночас зберегти адекватність фізичної 
інтерпретації. 

Розрізняють прямі та обернені задачі [7, 8]. 
Прямі задачі спрямовані на визначення 
характеристик стану структури за заданими 
параметрами системи (наприклад, функцій E(x), n(x), 
p(x), T(x)), тоді як обернені полягають у відновленні 
властивостей матеріалів (наприклад, значень Dn , Dp), 
геометрії елементів тощо на основі 
експериментальних даних. Приклад структурування 
задач наведено на рис. 1. Обернені задачі є особливо 
складними, оскільки часто мають некоректний 

характер і потребують застосування методів 
регуляризації та оптимізації. 

 
Рис. 1. Система прямих та обернених задач моделювання 

характеристик p-i-n-структур 
 

Поєднання класичних математичних моделей 
із сучасними інтелектуальними алгоритмами 
відкриває можливість ефективного розв’язання 
задач цього типу, підвищуючи рівень точності та 
знижуючи ресурсоємність розрахунків. 

Відмітимо, що задачі напівпровідникової 
електроніки містять природним чином сформований 
малий параметр при старших похідних (див. приклад 
задачі (1)-(3)), що призводить до утворення 
граничних шарів і складної багатомасштабної (!) 
поведінки розв’язків [2, 6]. Пряме чисельне 
розв’язання цих задач потребує побудови 
надзвичайно дрібних обчислювальних сіток поблизу 
граничних шарів, що потребує значних 
обчислювальних ресурсів і ускладнює забезпечення 
стійкості алгоритмів. Підвищення ефективності 
алгоритмів розв’язання задач напівпровідникової 
електроніки вбачаємо у застосуванні асимптотичних 
методів, зокрема методу примежових поправок [1, 
2], які, у свою чергу, спонукають до використання 
алгоритмів символьних перетворень для отримання 
результатів розчеплення початкових складних задач 
та спеціалізованих нейронних мереж для 
автоматизованого розпізнавання типу задач, що 
отримані у результаті розчеплення.  

 
III. ПРОБЛЕМАТИКА КІБЕРМАТЕМАТИЧНОГО 

МОДЕЛЮВАННЯ 
Вирішення проблем напівпровідникової 

електроніки (складність яких постійно зростає) 
зумовлює потребу у створенні гібридних моделей, 
які поєднують строгі аналітичні методи з 
інтелектуальними обчислювальними технологіями, 
такими як нейронні мережі та Physics-Informed 
Neural Networks (PINN) [4]. Такий підхід відкриває 
можливості для автоматизації процесу побудови 
моделей, адаптивної дискретизації розрахункових 
сіток та формування високоточних прогнозів 
поведінки пристрою в широкому діапазоні режимів 
роботи [9]. 
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Рис 2. Блок-схема автоматизації моделювання 

 
Методи теорії збурень є одним із 

найефективніших підходів для розв’язання таких 
задач. Для p-i-n-структур цей підхід передбачає 
виділення внутрішнього розв’язку, який описує 
поведінку в основній області, та зовнішнього 
(граничного) розв’язку, що відтворює різкі зміни 
поблизу контактів. Рекурентні алгоритми дають 
змогу автоматизувати процес побудови таких 
розв’язків, покроково уточнюючи як внутрішню, так 
і примежову частини моделі. Це дозволяє уникнути 
надмірної глобальної дискретизації та зберегти 
високу точність при суттєвому зменшенні 
обчислювальних витрат [7, 9]. Загальну блок-схему 
процесу автоматизації моделювання показано на 
рис. 2. 

Проблема автоматизації процесів 
моделювання у напівпровідниковій електроніці 
полягає у зменшенні залежності результату від 
ручного налаштування параметрів чисельних 
методів, геометрії та фізичних характеристик 
приладів. Класичні чисельні схеми, такі як метод 
скінченних різниць, метод скінченних елементів 
зазвичай вимагають ретельного підбору сітки та 
параметрів, особливо у випадках із сильними 
локальними збуреннями [7, 9, 10]. Це ускладнює 
моделювання багатоваріантних сценаріїв, 
оптимізацію структури приладів та проведення 
обернених розрахунків для відновлення профілю 
легування або геометрії на основі 
експериментальних даних. 

Один із способів розв’язання цієї проблеми є 
використання гібридних кіберматематичних 
моделей, у яких аналітична частина забезпечує 
концептуальну структуру, а інтелектуальний блок – 
наприклад, нейронна мережа – виконує роль 
адаптивного апроксиматора складних залежностей 
[11, 12]. Поєднання асимптотичних методів і Physics-
Informed Neural Networks дозволяє скоротити 
кількість необхідних обчислень, автоматично 
визначати поправки для граничних шарів і 
забезпечувати стійкість моделювання навіть за 
наявності шумових даних або неповної інформації 
про систему. Такі підходи вже продемонстрували 
ефективність у задачах моделювання електронних і 

оптоелектронних пристроїв, а також у процесах 
оптимізації параметрів мікро- і наноелектронних 
компонентів [11, 12]. Концептуальну схему кібер-
математичного моделювання наведено на рис. 3. 

 
Рис 3. Концептуальна схема кіберматематичного моделювання 

задач напівпровідникової електроніки 
 

Сучасний стан досліджень у галузі 
математичного моделювання напівпровідникових 
структур характеризується значними досягненнями 
у застосуванні як аналітичних, так і чисельних 
методів, однак низка суттєвих обмежень 
залишається невирішеною. Більшість існуючих 
робіт зосереджена на задачах зі згладженими 
розв’язками та відносно простою геометрією 
області, де поведінка фізичних величин змінюється 
поступово і не виникає різко виражених граничних 
шарів або багатомасштабних переходів [7, 9, 10]. 
Такий підхід часто не відповідає реальним умовам 
роботи сучасних напівпровідникових пристроїв, 
особливо високочастотних або силових, у яких 
складна структура профілю легування, 
неоднорідності матеріалів та впливи зовнішніх полів 
призводять до появи областей з різко змінними 
характеристиками. 

Ще однією характерною особливістю 
проблемної області є поєднання кількох фізичних 
процесів у межах однієї моделі – електричних, 
теплових, оптичних та, у деяких випадках, 
механічних взаємодій. Це призводить до 
формування мультифізичних математичних 
моделей, які містять системи диференціальних 
рівнянь в частинних похідних з сильно нелінійними 
зв’язками та різними часовими і просторовими 
масштабами [1, 2, 13, 14]. Традиційні чисельні 
методи, навіть високого порядку точності, часто 
виявляються неефективними в таких умовах через 
необхідність одночасного врахування жорстких 
граничних умов, високої розмірності задачі та 
відсутності повної інформації про параметри. 

Додатковою проблемою є відсутність 
уніфікованих підходів до моделювання структур з 
неповними або зашумленими експериментальними 
даними. У багатьох випадках інформація про 
профіль легування, дефекти або граничні умови є 
неповною чи неточною, що ускладнює застосування 
класичних методів моделювання [15]. Застосування 
штучного інтелекту, зокрема Physics-Informed Neural 
Networks та їхніх модифікацій, дає змогу частково 
компенсувати цю проблему, проте інтеграція таких 
підходів у повноцінний інженерний цикл 
залишається відкритим завданням. 
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IV. НЕЙРОМЕРЕЖЕВІ ПІДХОДИ В 

КІБЕРМАТЕМАТИЧНОМУ МОДЕЛЮВАННІ 
Сучасний розвиток кіберматематичного 

моделювання тісно пов’язаний із впровадженням 
символьних перетворень та нейромережевих методів 
для розв’язання диференціальних рівнянь, що 
описують процеси електронно-діркового переносу, 
теплопровідності, дифузії та взаємодії 
багатофізичних явищ у напівпровідникових 
структурах. Штучні нейронні мережі виступають 
функціональними апроксиматорами розв’язків, де 
навчання здійснюється з урахуванням як 
експериментальних даних, так і виконання рівнянь з 
початковими та граничними умовами. 

Важливим здобутком у цьому напрямі стали 
Physics-Informed Neural Networks (PINN) [4, 16], які 
завдяки автоматичному диференціюванню 
інтегрують рівняння у процес навчання, що дозволяє 
працювати навіть за умов неповних або зашумлених 
даних. Подальший розвиток привів до 
Asymptotically-Informed Neural Networks (AINN) [17, 
18], у яких архітектура враховує апріорні знання про 
асимптотичну поведінку розв’язків у граничних 
шарах, що особливо важливо для задач із вираженою 
багатомасштабністю, зокрема для p-i-n-структур. 

Розвиваються також архітектури, що 
враховують закони збереження та симетрії систем, 
як-от Hamiltonian Neural Networks чи Symmetry-
Preserving Networks, що підвищує точність і зменшує 
потребу в обсязі навчальних даних. Окрему увагу 
приділено оберненим задачам, де нейронні мережі 
застосовуються для відновлення параметрів або 
аналітичних виразів рівнянь на основі 
експериментальних спостережень чи числових 
розв’язків, зокрема із залученням трансформерних 
архітектур. 

Поєднання класичних методів теорії збурень з 
глибинними нейронними мережами формує новий 
клас гібридних моделей, здатних автоматизувати 
розв’язання складних багатомасштабних задач та 
підвищити ефективність аналізу даних у прямій та 
оберненій постановках. У результаті визначальними 
факторами розвитку моделювання p-i-n-структур є 
багатомасштабність і жорсткість задач, 
мультифізичність процесів та неповнота даних, що 
зумовлює потребу у створенні гібридних методів, які 
поєднують аналітичну строгість з адаптивністю 
машинного навчання. 

V. ВИСНОВКИ 
Огляд підходів до моделювання процесів у 

напівпровідниковій електроніці показав, що 
традиційні чисельні методи часто виявляються 
недостатньо ефективними для задач із 
багатомасштабністю, складною геометрією та 
неповними даними. Перспективним є використання 
методів теорії збурень у поєднанні з рекурентними 
алгоритмами та інструментами кіберматематичного 
моделювання, зокрема нейронними мережами. 

Такий підхід дозволяє зменшити обчислювальні 
витрати, зберігаючи точність і фізичну узгодженість 
результатів. 

Інтеграція штучного інтелекту, зокрема 
Physics-Informed Neural Networks, відкриває нові 
можливості для розв’язання задач оптимізації та 
ідентифікації параметрів. Подальші дослідження 
пов’язані з розвитком мультифізичних моделей, 
здатних враховувати комплексні впливи та 
автоматично прогнозувати характеристики 
пристроїв, що відповідає потребам сучасної 
напівпровідникової промисловості.  
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