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Анотація — Розглядаються особливості ансамблю 
нейронних мереж для прогнозування емпіричного 
коефіцієнта гідравлічного опору у відкритих руслах 
річок, відомого як коефіцієнт шорсткості Шезі, та 
підхід для вирішення проблеми агрегування його 
прогнозів, який ґрунтується на модифікації методу 
голосування. Представлено результати апробації 
запропонованого ансамблю нейронних мереж. 
Реалізацію алгоритмів побудови моделей ансамблю, 
ансамблевого навчання, агрегування прогнозів 
штучних нейронних мереж здійснено за допомогою 
методів програмування Python. 
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I.  ВСТУП  
Розглядається задача виявлення найкращого 

результату обчислень серед множини прогнозів 
ансамблю штучних нейронних мереж. При цьому 
система з трьох нейронних мереж застосовується 
для прогнозування емпіричного коефіцієнта 
гідравлічного опору у відкритих руслах річок, 
відомого як коефіцієнт шорсткості Шезі С [1]. Така 
задача є продовженням наших досліджень, які 
представлені в [2-5] та включали в себе огляд 
методів обчислення коефіцієнта Шезі, розробку 
структури даних для навчання штучної нейронної 
мережі (ШНМ), розробку базової моделі нейронної 
мережі (НМ) та її модифікацій. 

Як відомо, коефіцієнт шорсткості Шезі дозволяє 
контролювати більшість факторів, що визначають 
гідравлічний опір. Він відіграє ключову роль у 
гідравлічних розрахунках, дозволяючи точно 
моделювати рух води в річках, каналах та інших 
відкритих водотоках на основі одно- та двовимірної 

математичних моделей гідродинаміки [1, 6]. 
Прогнозування коефіцієнта Шезі є критично 
важливим для багатьох інженерних та екологічних 
завдань в галузі водного господарства, зокрема, 
моделювання паводкових потоків, оцінки ризиків 
повеней, прогнозування загальної та локальної ерозії 
русла річки, транспортування та осадження наносів, 
моделювання транспорту забруднень тощо [6-8]. 

Ансамблеві методи машинного навчання широко 
застосовуються в різних сферах завдяки їх високій 
точності, стійкості до перенавчання та здатності 
узагальнювати дані. Ансамблеві методи 
ґрунтуються на принципі об’єднання прогнозів 
декількох індивідуальних моделей для отримання 
більш надійного і точного результату обчислень [9, 
10]. В нашому випадку в якості моделей системи 
ансамблю застосовуються три однорідних повно-
зв'язних нейронних мережі із сигмоїдною функцією 
активації. Базова модель такої нейронної мережі 
була апробована в [3-5].  

При розробці ансамблю нейронних для 
обчислення коефіцієнта шорсткості Шезі 
стикнулись з проблемою виявлення найкращого 
результату обчислень серед множини прогнозів 
моделей нейронних мереж. Розглядаються основні 
особливості запропонованого ансамблю нейронних 
мереж та підхід для вирішення проблеми 
агрегування його прогнозів, який ґрунтується на 
модифікації методу максимального голосування. 

II.  ОБЧИСЛЮВАЛЬНА МОДЕЛЬ ДЛЯ АНСАМБЛЮ 
НЕЙРОННИХ МЕРЕЖ 

Розглядається задача обчислення наближеного 
значення коефіцієнта шорсткості Шезі С(x1, x2) за 
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допомогою ансамблю ШНМ на основі наступної 
обчислювальної моделі: 

 С(x1, x2) = CA ± φ, x1 є {n, Δ, Sf, B}, x2 є {h, R},.(1) 

де CA = f(x1, x2) – значення коефіцієнта Шезі в 
першому наближенні (м1/2/с), що обчислюється за 
допомогою базової ШНМ (ANN-A), яка була 
апробована в [3-5]; φ = f(x1, x2) – величина 
уточнення, яка встановлюється за допомогою двох 
додаткових ШНМ (ANN-B1, ANN-B2), що 
побудовані на основі базової моделі мережі; n – 
коефіцієнт шорсткості Гоклера-Меннінга (c/м1/3), Δ – 
висота виступів шорсткості русла (м), Sf – 
гідравлічний ухил, B – середня ширина потоку (м), h 
– середня глибина потоку (м), R – гідравлічний 
радіус (м). 

III. АНСАМБЛЕВІ МЕТОДИ 

A. Модель ансамблю  
Пропонується однорідний ансамбль, який 

складається з трьох однотипних повно-зв'язних 
нейронних мереж прямого поширення – ANN-A, 
ANN-B1 та ANN-B2 (рис. 1). Кожна НМ має вхідний 
шар, один прихований шар та вихідний шар. 
Кількість нейронів у вхідному шарі відповідає 
кількості вхідних гідрологічних та гідро-
морфологічних параметрів. Кількість нейронів у 
вихідному шарі дорівнює одному, оскільки 
обчислюється єдине значення: у випадку основної 
моделі ANN-A – значення коефіцієнта Шезі в 
першому наближенні CA , у випадку допоміжних 
моделей ANN-B1 та ANN-B2 – відповідно значення 
величини φB1 = + φ, φB2 = – φ, які використовується 
для уточнення CA згідно (1). В якості функції 
активації в прихованих шарах НМ використовується 
сигмоїдна функція [9-13]. 

 
Рис. 1. Структура однорідного ансамблю нейронних мереж 

B. Ансамблеве навчання 
Навчальні та тестові приклади для нейронних 

мереж побудовані відповідно до принципів 
безперервності, однорідності, ненадлишковості та 
нормалізації. Ці набори даних отримані з польових 
спостережень за гідрологічними та гідро-
морфологічними параметрами на окремих ділянках 
рівнинних та гірських річок [14]. Дані включають: 
висоту та ширину потоку, середню швидкість 

потоку, гідравлічний ухил, розмір частинок донного 
матеріалу та інші характеристики, що визначають 
гідравлічний опір. 

Формування навчальних вибірок та подальше 
навчання для кожної НМ ансамблю здійснюється на 
основі методу Bagging [9, 10]. Суть методу полягає у 
навчанні кількох моделей одного типу на окремих 
підвибірках навчальних даних та об'єднанні їх 
прогнозів. В нашому випадку навчання цих моделей 
здійснюється паралельно за допомогою методу 
зворотного поширення похибки [11-13]. 

C. Метод об'єднання прогнозів моделей ансамблю 
На основі навченого ансамблю нейронних мереж 

наближена оцінка досліджуваного емпіричного 
коефіцієнта Шезі виконується за допомогою 
агрегування прогнозів трьох моделей із 
застосуванням модифікованого методу голосування 
на основі вирішення зворотної задачі. А саме, 
учасники ансамблю створюють прогнози CA, φB1, φB2 
(рис. 1), які об’єднуються з врахуванням (1). 
Прогнози CA, CB1, CB2 аналізуються для отримання 
сукупного прогнозу, який найкраще відповідає 
вхідним умовам задачі (1). 

IV. ДОСЛІДЖЕННЯ ПРОБЛЕМИ АГРЕГУВАННЯ 
ПРОГНОЗІВ МОДЕЛЕЙ АНСАМБЛЮ 

В нашому випадку агрегування прогнозів 
моделей НМ ANN-А, ANN-B1 та ANN-B2 в єдиний 
результат обчислень ансамблю здійснюється на 
основі методу максимального голосування [9]. Ідея 
такого підходу передбачає визначення прогнозів для 
кожної нейронної мережі ансамблю та 
прогнозування тільки тієї оцінки певної НМ, яка 
найкраще відповідає вхідним умовам задачі (1). 

В рамках нашого дослідження розглядались дві 
гіпотези щодо встановлення найкращої оцінки 
коефіцієнта Шезі (1) серед множини прогнозів CA, 
CB1, CB2, які дозволяють отримати відповідні 
нейронні мережі запропонованого ансамблю. 

A. Гіпотеза 1 
Запропоновані однотипні моделі нейронних 

мереж ансамблю навчаються на окремих 
відповідних підвибірках навчальних даних. 
Припускаємо, що для всіх нових вхідних даних 
ансамблю в межах предметної області (які не 
включались в навчальні приклади і для яких 
потрібно обчислити наближене значення 
коефіцієнта Шезі) існує їх найкраща наближена 
відповідність одній з підвибірок навчальних даних. 
Тоді єдиний результат ансамблю обчислюється 
згідно (1) за допомогою відповідної нейронної 
мережі, яка навчалась на таких даних. 

B. Гіпотеза 2 
Розглядається зворотна задача для обчислення 

швидкостей водного потоку Vp та Vo (м/с) з 
врахуванням прогнозів значень коефіцієнта Шезі 
(які отримані за допомогою трьох моделей 
нейронних мереж згідно (1)) CA, CB1, CB2 та вхідних 
даних гідрологічних спостережень. Припускаємо, 
що для найкращої (вихідної) оцінки коефіцієнта 
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Шезі C(x1, x2), яка обирається серед наближених 
прогнозів CA, CB1, CB2 моделей ансамблю, 
виконується умова, що наближене значення 
швидкості водного потоку Vp, яке обчислене за 
допомогою цієї оцінки C, найменше відхиляється від 
її еталонного (очікуваного) значення Vo. 

V. РЕЗУЛЬТАТИ 
Перевірка гіпотез 1 та 2 виконувалась на 

прикладі гідроморфологічних даних на ділянці р. 
Дніпро (нижче за течією від м. Київ) [3, 4]. 

За підсумками застосування алгоритму гіпотези 
1 для агрегування прогнозів ансамблю нейронних 
мереж в один вихідний результат прогнозування 
коефіцієнта Шезі С встановлено, що отримані його 
значення можуть не відповідати очікуваним. Такі 
обставини можна пояснити наступним чином. В 
умовах неповноти і різноманітності даних про 
характеристики річок (кількісні та якісні), що 
визначають особливості поведінки гідравлічного 
опору, існують випадки, коли деякому вектору 
гідрологічних та гідро-морфологічних параметрів не 
вдається вірно поставити у відповідність образ, клас 
(кластер), який описує діапазон поведінки значень 
коефіцієнта Шезі. В рамках гіпотези 1 такі 
обставини можуть призвести до хибного 
встановлення вихідної оцінки коефіцієнта Шезі С 
(1). Тому гіпотезу 1 спростовано. 

За результатами обчислень згідно алгоритму 
гіпотези 2 встановлено, що отримані вихідні 
значення прогнозування коефіцієнта Шезі С 
відповідають його очікуваним значенням. Тому 
гіпотезу 2 підтверджено. В нашому дослідженні 
умови гіпотези 2 покладена в основу 
обчислювального алгоритму для прогнозування 
коефіцієнта гідравлічного опору за допомогою 
ансамблю нейронних мереж. 

VI. ВИСНОВКИ 
Представлено модифікований метод агрегування 

прогнозів ансамблю штучних нейронних мереж для 
випадку прогнозування емпіричного коефіцієнта 
шорсткості Шезі у відкритих руслах річок на основі 
польових даних про їх гідрологічні та гідро-
морфологічні характеристики.  

Виконано апробацію запропонованого 
однорідного ансамблю нейронних мереж для 
обчислення коефіцієнта гідравлічного опору на 
основі гідрологічних польових даних окремих 
ділянок рівнинних і гірських річок. Встановлено, що 
відносні похибки прогнозів знаходяться в межах 
0,3% ÷ 6,1%, коефіцієнт ефективності моделі Неша-
Саткліффа NSE = 0,991 ÷ 0,998.  

Результати підтверджують ефективність підходу 
на основі ансамблю нейронних мереж для оцінки 
гідравлічного опору у відкритих руслах річок в 
умовах обмежених або неповних вхідних даних. 

Реалізацію алгоритмів побудови моделей 
ансамблю, ансамблевого навчання, агрегування 
прогнозів нейронних мереж ансамблю здійснено за 
допомогою методів програмування Python та 
представлено в [15]. Розробка ансамблевого підходу 
на Python забезпечує просту інтеграцію в 
гідрологічні інформаційно-аналітичні системи. 

ЛІТЕРАТУРА  
[1] Sturm, T.W. (2001). Open Channel Hydraulics. McGraw-Hill, 

N.Y., 493 p. 
[2] Stefanyshyn, D. V., Khodnevich, Y. V., Korbutiak, V. M. 

(2021). Еstimating the Chezy roughness coefficient as a 
characteristic of hydraulic resistance to flow in river channels: a 
general overview, existing challenges, and ways of their 
overcoming. Environmental safety and natural resources, 39 (3), 
16–43. https://doi.org/10.32347/2411-4049.2021.3.16-43 

[3] Yaroslav V. Khodnevych, Dmytro V. Stefanyshyn (2022). Data 
arrangements to train an artificial neural network within solving 
the tasks for calculating the Chezy roughness coefficient under 
uncertainty of parameters determining the hydraulic resistance 
to flow in river channels. Environmental safety and natural 
resources, Vol. 42 № 2, 59-85. https://doi.org/10.32347/2411-
4049.2022.2.59-85 

[4] Khodnevych, Y., Stefanyshyn, D., Korbutiak, V. (2023). The 
Chezy Roughness Coefficient Computing Using an Artificial 
Neural Network to Support the Mathematical Modelling of 
River Flows. In: Dovgyi, S., Trofymchuk, O., Ustimenko, V., 
Globa, L. (eds) Information and Communication Technologies 
and Sustainable Development. ICT&SD 2022. Lecture Notes in 
Networks and Systems, vol 809. Springer, Cham. 
https://doi.org/10.1007/978-3-031-46880-3_26 

[5] Yaroslav Khodnevych, Dmytro Stefanyshyn (2023). Do we 
need a more sophisticated multilayer artificial neural network to 
compute roughness coefficient? Environmental safety and 
natural resources, Vol. 48 (4), 170–182. 
https://doi.org/10.32347/2411-4049.2023.4.170-182 

[6] Julien, P.Y. (2002). River Mechanics. Cambridge University 
Press, UK, 456 p. 

[7] De Wrachien, D., Mambretti, S., and Sole, A. (2010). 
Mathematical models in flood management: overview and 
challenges. WIT Trans. on Ecology and the Environment, Vol. 
133. Flood Recovery, Innovation and Response, 61–72; 
doi:10.2495/FRIAR100061 

[8] Julien, P.Y. (2010). Erosion and sedimentation. Cambridge 
University Press, 371 p. 

[9] Mohammed, A., and Kora, R. (2023). A comprehensive review 
on ensemble deep learning: Opportunities and challenges. 
Journal of King Saud University – Computer and Information 
Sciences, 35, 757-774.  

[10] Gautam Kunapuli (2023). Ensemble Methods for Machine 
Learning. Published by Manning, 352 p. 

[11] Rokach, L. (2019). Ensemble Learning: Pattern Classification 
Using Ensemble Methods. World Scientific Publishing 
Company, 300 p. 

[12] Haikin, S. (2008). Neural Networks and Learning Machines 
(3rd Edition). Prentice Hall, 906 p. 

[13] Ahmed Fawzy Gad, Fatima Ezzahra Jarmouni (2021). 
Introduction to Deep Learning and Neural Networks with 
Python. A Practical Guide - 2021 Elsevier Inc. 285 p. 

[14] В.І. Вишневський, О.О. Косовець (2003). Гідрологічні 
характеристики річок України - К.: Ніка-Центр, 324 с. 

[15] Khodnevych, Ya. (2025). Software Implementation of a 
Computational Algorithm for Training an Ensemble of Neural 
Networks to Predict the Chezy Roughness Coefficient. 
https://github.com/yakhodnevych/ANNE_approximation_C.git 

 

https://doi.org/10.32347/2411-4049.2021.3.16-43
https://github.com/yakhodnevych/ANNE_approximation_C.git

	I.  Вступ
	II.  Обчислювальна модель для ансамблю нейронних мереж
	III. Ансамблеві методи
	A. Модель ансамблю
	B. Ансамблеве навчання
	C. Метод об'єднання прогнозів моделей ансамблю

	IV. Дослідження проблеми агрегування прогнозів моделей ансамблю
	A. Гіпотеза 1
	B. Гіпотеза 2

	V. Результати
	VI. Висновки
	Література


