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Abstract — This work proposes a physics-informed
feature engineering approach to improve the predictive
accuracy of surrogate models for problems in solid
mechanics. The prediction of the maximum deflection of a
thin square plate under a uniform load is considered as a
case study. A dataset of 5000 samples was generated using
the finite element method in Ansys Mechanical. This was
followed by a physical validation based on the theory of
small deflections, and invalid samples were discarded. A
random forest regressor algorithm was used for the
surrogate model, and its hyperparameters were optimized
using RandomizedSearchCV. Two input feature
architectures were compared: a baseline architecture
(using fundamental physical parameters) and a physics-
informed architecture (using complex engineering
features, specifically relative flexibility K1 and cylindrical
rigidity D). The results showed a significant increase in
accuracy when using physics-informed features compared
to the baseline approach. An analysis of feature
importance confirmed the dominant role of K1 and the
load p, which is fully consistent with theoretical
mechanics. The obtained results demonstrate that feature
engineering based on physical principles improves both
the accuracy and interpretability of machine learning
surrogate models.
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1. INTRODUCTION

Modern design and analysis of engineering
structures, especially thin plates and shells, are closely
linked to the use of numerical methods like the Finite
Element Method (FEM) [1, 2]. Despite their high
accuracy, these methods are computationally expensive.
This makes them difficult to use for optimization or
uncertainty analysis tasks that require hundreds or
thousands of simulations.

An effective alternative is the use of surrogate
models based on machine learning [3,4]. Such models,
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trained on a limited amount of data from FEM
simulations, can predict the system's behavior almost
instantly with high accuracy. However, the quality of a
surrogate model critically depends on two factors: the
strategy for generating the training dataset and the
architecture of the input features fed into the model.

This work investigates the influence of input feature
architecture on the accuracy of a surrogate model, using
the problem of predicting the maximum deflection of a
thin square plate under a uniform load. The study aims
to compare the effectiveness of two input data
architectures: a baseline one, consisting of fundamental
physical parameters, and a physics-informed one, which
uses complex engineering features.

II. PROBLEM FORMULATION

A. Data Generation and Preparation

To train the model, an initial dataset of 5000 points
was generated using random uniform sampling. The
input parameters were varied within the following
ranges: plate size, a [0.05, 1.5] m; thickness, ¢ [0.005,
0.01] m; Young's modulus, £ [1-10°, 2-10"] Pa;
Poisson's ratio, v [0.20, 0.45]; and load,
p[1-10% 1-10°] Pa.

The target variable was
deflection w, m.

the maximum plate

The deflection value was obtained as a result of an
FEM simulation in the Ansys Mechanical CAE system.
The modeling and calculation were performed using the
APDL (Ansys Parametric Design Language) scripting
language [8].

The algorithm for construction and calculation is
based on the same principles that were described in
detail in the paper [6].

Since a random combination of parameters can lead
to results that are outside the applicability of the small
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deflection theory, a physical validation and data filtering
were performed according to the criteria of the
Kirchhoff-Love [5] theory of small deflections. That is,
0.0001 < w/t < 0.5, where 0.0001 is the relative limit of
deflection measurability.

After filtering, the final dataset consisted of 2249
physically valid samples, or 44.98% of the initial
volume. These samples were used for further training
and testing.

B. Surrogate Model

The random forest regressor, an ensemble algorithm
from the Python package sklearn.ensemble [7], was
chosen as the surrogate model. This choice was made
due to its high efficiency on tabular data, resistance to
overfitting, and ability to capture complex non-linear
dependencies without the need for data scaling.

For better visualization and interpretation of the
results, the dataset was converted to the following units
before machine learning: linear parameters (a, ¢, w) to
mm, and Young's modulus and load values to MPa.

The regressor model was configured with the
following hyperparameters to ensure an optimal balance
between prediction accuracy and computational
efficiency: the number of trees in the forest was set to
98; the maximum depth of each tree was limited to 11
levels; all available features were used for each split; the
minimum number of samples for an internal node split
was set to 5; and the minimum number of samples in a
leaf node was set to 3.

To select the optimal hyperparameters for the
regressor model, the RandomizedSearchCV method
from the scikit-learn library [7] was used, which
performs stochastic optimization in the hyperparameter
space combined with cross-validation.

The optimization process included defining
parameter ranges for key hyperparameters, applying 5-
fold cross-validation, optimizing for the negative mean
squared error metric, and limiting the process to 50
iterations. This approach allowed for a systematic
exploration of the hyperparameter space to select the
optimal settings for the model.

C. Input Feature Architectures

To study the influence of the input feature
architecture on the quality of the surrogate model, two
different approaches to forming the input data vector
were considered.

Each architecture was designed considering the
physical principles of the plate deflection prediction
problem and provided a different level of integration of
engineering knowledge into the machine learning
process.

1) Baseline Architecture.

The baseline architecture used a set of fundamental
physical parameters that directly characterize the plate's
geometry, material properties, and loading. The input
vector consisted of five parameters: [a (mm), ¢ (mm), E
(MPa), v, p (MPa)]. This approach allowed the model to
independently learn the complex  non-linear
relationships between the input parameters and the

target variable w (mm) based solely on the patterns in
the training data.

2)  Physics-informed Architecture.

This architecture was based on an engineering
analysis of physical dependencies and the construction
of corresponding features. Based on the fundamental
parameters, complex engineering features were created
that integrate several basic quantities into single,
physically meaningful characteristics:

e Ki: the relative flexibility of the plate, defined
as K1 = a/t, which characterizes the geometric
flexibility of the structure.

e D: the cylindrical bending rigidity, defined as
(1), which integrates the influence of material
properties (E, v) and geometry (t) on bending
resistance.

e  p: the intensity of the uniform load (MPa).

D=E-t3/12-(1—v2) 1)

This approach explicitly provided the model with
information about the physical mechanisms of
deformation, particularly the non-linear dependence of
deflection on thickness, which contributed to more
effective learning.

D. Quality Assessment

For each architecture, the model was trained on 80%
of the data and tested on the remaining 20%. The quality
was evaluated using the coefficient of determination
(R?) and the mean squared error (MSE).

III. RESULTS

Training and testing the models on the filtered,

physically correct data using the two feature
architectures showed a significant difference in
prediction quality.

The summary table of results for the two
architectures is shown in Table 1. The model accuracy
comparison for the "Baseline" architecture is shown in
Fig. 1, and for the "Physics-informed" architecture in
Fig. 2.

TABLE I. COMPARISON OF PREDICTION QUALITY FOR THE TWO
PROPOSED ARCHITECTURES

Feature Architecture R? MSE
Baseline 0.646 3.223
Physics-informed 0.896 0.946

A. Baseline Architecture

The model trained on fundamental parameters
showed satisfactory but limited accuracy: R? = 0.646,
MSE = 3.223, see Fig. 1 for more details. The analysis
revealed that the model captured general trends but had
a significant scatter of predictions, especially for large
deflection values. This indicates that independently
learning the complex non-linear dependence of
deflection on thickness is a difficult task for the model.

B. Physics-informed Architecture

After switching to engineering features, the model's
quality significantly increased: R? = 0.896, MSE =
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0.946, see Fig. 2 for more details. The feature
importance analysis for the improved model showed that
the largest contributions to the prediction were made by
physically  significant parameters: K1 (relative
flexibility, ~59%) and p (load, ~24%), which fully
aligns with theoretical mechanics. The introduction of
the D parameter allowed the model to effectively
account for the combined influence of Young's modulus
and thickness.

Baseline Architecture
R?=0.646, MSE=3.223

This confirms that the model learned to make
decisions based on the same complex criteria used by a
design engineer.

IV. CONCLUSIONS

The conducted research demonstrates that the
architecture of input features is a critically important
factor when building surrogate models for problems in
solid mechanics. The transition from a set of basic
physical parameters to physics-informed features, such
as relative flexibility (K1) and cylindrical rigidity (D),
significantly increases the prediction accuracy of a
model based on the random forest regressor algorithm.
Feature engineering not only improves quality metrics
but also enhances the model's interpretability, as it
makes decisions based on the same physical principles
used in classical theoretical mechanics, and generally
improves its ability to generalize.
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Figure 1. Comparison of model accuracy for the "Baseline"
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