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Abstract — This work proposes a physics-informed 
feature engineering approach to improve the predictive 
accuracy of surrogate models for problems in solid 
mechanics. The prediction of the maximum deflection of a 
thin square plate under a uniform load is considered as a 
case study. A dataset of 5000 samples was generated using 
the finite element method in Ansys Mechanical. This was 
followed by a physical validation based on the theory of 
small deflections, and invalid samples were discarded. A 
random forest regressor algorithm was used for the 
surrogate model, and its hyperparameters were optimized 
using RandomizedSearchCV. Two input feature 
architectures were compared: a baseline architecture 
(using fundamental physical parameters) and a physics-
informed architecture (using complex engineering 
features, specifically relative flexibility K1 and cylindrical 
rigidity D). The results showed a significant increase in 
accuracy when using physics-informed features compared 
to the baseline approach. An analysis of feature 
importance confirmed the dominant role of K1 and the 
load p, which is fully consistent with theoretical 
mechanics. The obtained results demonstrate that feature 
engineering based on physical principles improves both 
the accuracy and interpretability of machine learning 
surrogate models. 
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I.  INTRODUCTION 
Modern design and analysis of engineering 

structures, especially thin plates and shells, are closely 
linked to the use of numerical methods like the Finite 
Element Method (FEM) [1, 2]. Despite their high 
accuracy, these methods are computationally expensive. 
This makes them difficult to use for optimization or 
uncertainty analysis tasks that require hundreds or 
thousands of simulations. 

An effective alternative is the use of surrogate 
models based on machine learning [3,4]. Such models, 

trained on a limited amount of data from FEM 
simulations, can predict the system's behavior almost 
instantly with high accuracy. However, the quality of a 
surrogate model critically depends on two factors: the 
strategy for generating the training dataset and the 
architecture of the input features fed into the model.  

This work investigates the influence of input feature 
architecture on the accuracy of a surrogate model, using 
the problem of predicting the maximum deflection of a 
thin square plate under a uniform load. The study aims 
to compare the effectiveness of two input data 
architectures: a baseline one, consisting of fundamental 
physical parameters, and a physics-informed one, which 
uses complex engineering features. 

II. PROBLEM FORMULATION 

A. Data Generation and Preparation 
To train the model, an initial dataset of 5000 points 

was generated using random uniform sampling. The 
input parameters were varied within the following 
ranges: plate size, a [0.05, 1.5] m; thickness, t [0.005, 
0.01] m; Young's modulus, E [1·10¹⁰, 2·10¹¹] Pa; 
Poisson's ratio, ν [0.20, 0.45]; and load, 
p [1·10³, 1·10⁵] Pa. 

The target variable was the maximum plate 
deflection w, m. 

The deflection value was obtained as a result of an 
FEM simulation in the Ansys Mechanical CAE system. 
The modeling and calculation were performed using the 
APDL (Ansys Parametric Design Language) scripting 
language [8]. 

The algorithm for construction and calculation is 
based on the same principles that were described in 
detail in the paper [6]. 

Since a random combination of parameters can lead 
to results that are outside the applicability of the small 
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deflection theory, a physical validation and data filtering 
were performed according to the criteria of the 
Kirchhoff-Love [5] theory of small deflections. That is, 
0.0001 < w/t < 0.5, where 0.0001 is the relative limit of 
deflection measurability. 

After filtering, the final dataset consisted of 2249 
physically valid samples, or 44.98% of the initial 
volume. These samples were used for further training 
and testing.  

B. Surrogate Model 
The random forest regressor, an ensemble algorithm 

from the Python package sklearn.ensemble [7], was 
chosen as the surrogate model. This choice was made 
due to its high efficiency on tabular data, resistance to 
overfitting, and ability to capture complex non-linear 
dependencies without the need for data scaling.  

For better visualization and interpretation of the 
results, the dataset was converted to the following units 
before machine learning: linear parameters (a, t, w) to 
mm, and Young's modulus and load values to MPa. 

The regressor model was configured with the 
following hyperparameters to ensure an optimal balance 
between prediction accuracy and computational 
efficiency: the number of trees in the forest was set to 
98; the maximum depth of each tree was limited to 11 
levels; all available features were used for each split; the 
minimum number of samples for an internal node split 
was set to 5; and the minimum number of samples in a 
leaf node was set to 3. 

To select the optimal hyperparameters for the 
regressor model, the RandomizedSearchCV method 
from the scikit-learn library [7] was used, which 
performs stochastic optimization in the hyperparameter 
space combined with cross-validation. 

The optimization process included defining 
parameter ranges for key hyperparameters, applying 5-
fold cross-validation, optimizing for the negative mean 
squared error metric, and limiting the process to 50 
iterations. This approach allowed for a systematic 
exploration of the hyperparameter space to select the 
optimal settings for the model. 

C. Input Feature Architectures 
To study the influence of the input feature 

architecture on the quality of the surrogate model, two 
different approaches to forming the input data vector 
were considered. 

Each architecture was designed considering the 
physical principles of the plate deflection prediction 
problem and provided a different level of integration of 
engineering knowledge into the machine learning 
process. 

1) Baseline Architecture. 
The baseline architecture used a set of fundamental 

physical parameters that directly characterize the plate's 
geometry, material properties, and loading. The input 
vector consisted of five parameters: [a (mm), t (mm), E 
(MPa), ν, p (MPa)]. This approach allowed the model to 
independently learn the complex non-linear 
relationships between the input parameters and the 

target variable w (mm) based solely on the patterns in 
the training data. 

2) Physics-informed Architecture. 
This architecture was based on an engineering 

analysis of physical dependencies and the construction 
of corresponding features. Based on the fundamental 
parameters, complex engineering features were created 
that integrate several basic quantities into single, 
physically meaningful characteristics: 

• K1: the relative flexibility of the plate, defined 
as K1 = a/t, which characterizes the geometric 
flexibility of the structure. 

• D: the cylindrical bending rigidity, defined as 
(1), which integrates the influence of material 
properties (E, ν) and geometry (t) on bending 
resistance. 

• p: the intensity of the uniform load (MPa). 

D=E⋅t3/12⋅(1−ν2) (1) 

This approach explicitly provided the model with 
information about the physical mechanisms of 
deformation, particularly the non-linear dependence of 
deflection on thickness, which contributed to more 
effective learning. 

D. Quality Assessment 
For each architecture, the model was trained on 80% 

of the data and tested on the remaining 20%. The quality 
was evaluated using the coefficient of determination 
(R2) and the mean squared error (MSE). 

III. RESULTS 
Training and testing the models on the filtered, 

physically correct data using the two feature 
architectures showed a significant difference in 
prediction quality.  

The summary table of results for the two 
architectures is shown in Table 1. The model accuracy 
comparison for the "Baseline" architecture is shown in 
Fig. 1, and for the "Physics-informed" architecture in 
Fig. 2. 

TABLE I.  COMPARISON OF PREDICTION QUALITY FOR THE TWO 
PROPOSED ARCHITECTURES 

Feature Architecture R² MSE 
Baseline 0.646 3.223 
Physics-informed 0.896 0.946 

A. Baseline Architecture 
The model trained on fundamental parameters 

showed satisfactory but limited accuracy: R² ≈ 0.646, 
MSE ≈ 3.223, see Fig. 1 for more details. The analysis 
revealed that the model captured general trends but had 
a significant scatter of predictions, especially for large 
deflection values. This indicates that independently 
learning the complex non-linear dependence of 
deflection on thickness is a difficult task for the model. 

B. Physics-informed Architecture 
After switching to engineering features, the model's 

quality significantly increased: R² ≈ 0.896, MSE ≈ 
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0.946, see Fig. 2 for more details. The feature 
importance analysis for the improved model showed that 
the largest contributions to the prediction were made by 
physically significant parameters: K1 (relative 
flexibility, ~59%) and p (load, ~24%), which fully 
aligns with theoretical mechanics. The introduction of 
the D parameter allowed the model to effectively 
account for the combined influence of Young's modulus 
and thickness.   

 

Figure 1.  Comparison of model accuracy for the "Baseline" 

 

Figure 2.  Comparison of model accuracy for the "Physics-informed" 

This confirms that the model learned to make 
decisions based on the same complex criteria used by a 
design engineer. 

IV. CONCLUSIONS 
The conducted research demonstrates that the 

architecture of input features is a critically important 
factor when building surrogate models for problems in 
solid mechanics. The transition from a set of basic 
physical parameters to physics-informed features, such 
as relative flexibility (K1) and cylindrical rigidity (D), 
significantly increases the prediction accuracy of a 
model based on the random forest regressor algorithm. 
Feature engineering not only improves quality metrics 
but also enhances the model's interpretability, as it 
makes decisions based on the same physical principles 
used in classical theoretical mechanics, and generally 
improves its ability to generalize. 
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