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Abstract — Проведено статистичне моделювання 
процесів переносу в шарі з неповними даними на гра-
ниці тіла. Крайова задача сформульована для випадку 
ненульової початкової умови, наявності сталого дже-
рела на одній границі тіла (класична гранична умова) 
та вибірки експериментальних даних для шуканої 
функції на іншій границі (статистична гранична умо-
ва). Як гранична умова використовується модель 
лінійної регресії, отримана з експериментальних да-
них методом найменших квадратів. Записано 
матрицю регресорів, отримано інформаційну матрицю 
та матрицю помилок. На цій основі одержано форму-
ли та проаналізовано двосторонню критичну область 
на основі критерію Фішера. Проаналізовано вплив 
рівня надійності на ширину двосторонньої критичної 
області, побудованої для регресії та розв'язку задачі. 

Ключові слова — процес перенесення; статистичне 
моделювання; експериментальні дані; крайова задача; 
двостороння критична область 

I. ВСТУП

Різноманітні задачі інженерії, екології, біології, 
фармакології та низка інших технічних та техноло-
гічних досліджень потребують подальшого розвитку 
підходів і методів математичного опису нерівноваж-
них процесів різної фізичної природи в природних 
або штучних об’єктах [1]. Актуальність вказаних ви-
ще проблем спричинена необхідністю побудови 
ефективних методик і оцінок для прогнозування роз-
поділу забруднень техногенного походження, оцінці 
якості питної води та покращення її очистки в про-
мислових масштабах, встановленні впливу дифузії 
лікарських препаратів в тканину, дифузії агресивних 
речовин при оцінці надійності та довговічності 

експлуатації елементів і вузлів конструкцій для запо-
бігання руйнування відповідних матеріалів тощо. В 
низці задач такої природи актуальними є методи ста-
тистичного моделювання, які поєднують класичні 
підходи математичного моделювання та методи ма-
тематичної статистики. Такі дослідження дозволяють 
отримувати достовірний прогноз процесів, які проті-
кають в об’єктах навколишнього середовища, вузлах 
промислового обладнання, людському організмі 
тощо та вчасно вживати необхідні заходи для запобі-
гання їх негативного розвитку. Основні підходи та 
методи статистичного моделювання розвиваються 
доволі бурхливо протягом останніх декількох десяти-
літь та базуються на необхідності розв’язування та 
аналізу практичних задач [2, 3]. 

У роботі розглядається крайова задача парабо-
лічного типу, що описує процеси перенесення – 
тепла, маси, заряду, тощо, в шарі, коли на одній з 
границь наявні експериментальні дані щодо шука-
ної функції за ненульової початкової умови. Основ-
ною є розвиток та узагальнення методики, викладе-
ної в [4]. Зокрема, ефективну методику встановлен-
ня двосторонніх критичних областей для розв’язків 
параболічних диференціальних рівнянь за експери-
ментальних даних на границі тіла та досліджено 
вплив на них рівня надійності.  

II. МОДЕЛЬ ПРОЦЕСІВ ПЕРЕНЕСЕННЯ У ШАРІ ЗА 
ЕКСПЕРИМЕНТАЛЬНИХ ДАНИХ НА ГРАНИЦІ

Нехай в шарі товщини 0z  протікає процес, який 
описується функцією ),( zu τ , що є розв’язком дифе-
ренціального рівняння другого порядку в частинних 
похідних [5]  
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де A  - сталий коефіцієнт, τ  - час, z  - просторова 
координата. 

Приймаємо, що в початковий момент  
constuzu ≡=τ

=τ 00),( ,                 (2) 
а для 0>τ  на верхній поверхні шару діє стале 
джерело: 

constuzu z ≡=τ
= *0),( .                  (3) 

На нижній границі шару значення функції 
),( zu τ  отримані експериментально в n  моментах 

часу (табл. 1). 

Таблиця I.  ЕКСПЕРИМЕНТАЛЬНІ ДАНІ НА НИЖНІЙ ГРАНИЦІ ШАРУ  
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Тоді будуємо лінійну регресійну модель [6, 7], 
шукаючи її коефіцієнти методом найменших квад-
ратів [8]  

01)( aaf +τ=τ .                             (4) 
В результаті гранична умова при 0zz =  набуде 
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Зводимо задачу (1)-(3), (5) до задачі з нульовими 
граничними умовами і застосовуємо скінченне інтег-
ральне sin-перетворення Фур’є. В результаті отрима-
ємо розв’язок в загальному випадку у вигляді 
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Враховуючи, що )(τf  є лінійною регресією, маємо 
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де 0zmym π= . 
Оскільки вибірка експериментальних даних для 

шуканої функції задана на проміжку ],0[ nτ∈τ , 
тому отримана формула (7) справедлива на цьому 
часовому проміжку. 

III. ДВОСТОРОННЯ КРИТИЧНА ОБЛАСТЬ ДЛЯ 
ПРОГНОЗОВАНОГО ЗНАЧЕННЯ ПОБУДОВАНОЇ ЛІНІЙНОЇ 

РЕГРЕСІЙНОЇ МОДЕЛІ ДЛЯ ФУНКЦІЇ )(τf  

Щоб встановити двосторонню критичну область 
для функції ),( zu τ  - розв’язку крайової задачі (1)-
(3), (5) спочатку за методикою, наведеною в роботі 
[7], знайдемо двосторонню критичну область для 
лінійної регресії )(τf  (4).  

За заданим рівнем значущості α  визначаємо 
рівень надійності α−=β 1 . За таблицею експери-
ментальних даних (Табл. 1) записуємо матрицю 
регресорів ℵ , яка для цього випадку має вигляд 
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Для прогнозованого значення лінійної регресії 
)(τf  дисперсія визначається за формулою 
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де ( )τ=τ 1Tf . 
Шукану двосторонню критичну область для )(τf  

отримаємо, підставляючи оцінку середнього квадра-
тичного відхилення fσ  (8) у вираз ftff σ−τ )()(



. 

Тоді істинне значення шуканої функції на нижній гра-
ниці )(τf  з ймовірністю β  змінюється в межах [7]: 
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Тоді матрицю помилок отримаємо у вигляді 
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Зазначимо, що довжини двосторонніх критичних 
областей будуть різними у різних точках факторно-
го простору, оскільки в цих точках різними є векто-
ри τf , тобто точність прогнозованого значення лі-
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нійної регресії )(τf  може відрізнятися у різні мо-
менти часу τ . 

Знайдемо межі двосторонньої критичної області 
для функції )(τf . Нехай  
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Зазначимо, що “ + ” у формулі (10) відноситься 

до верхньої межі критичної області, а “-” – до 
нижньої.  
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Тоді збільшення кількості експериментів n  на 
тому самому проміжку ];0[ nτ∈τ  за сталого значен-
ня τσ  призводить до звуження двосторонньої кри-
тичної області (9), в якій з ймовірністю β  потрап-
ляють експериментальні дані. Тоді як збільшення 
середньо квадратичного відхилення τσ  величини τ
, за однакової кількості вимірів n  веде до збіль-
шення двосторонньої критичної області для функції 
лінійної регресії )(τf . Зазначимо, що вплив дис-
персії змінної τ  на двосторонню критичну область 
є аналогічним до впливу τσ , проте зростання на/в 
одне і те саме число сповільнює швидкість зростан-
ня цього інтервалу.  

Також відмітимо, що, оскільки коефіцієнт B  є 
прямо пропорційний значенню критерію Стьюдента 
ατ , то при зростанні рівня надійності β  збіль-

шується значення коефіцієнта B . 

IV. ВСТАНОВЛЕННЯ ДВОСТОРОННЬОЇ КРИТИЧНОЇ 
ОБЛАСТІ ДЛЯ РОЗВ’ЯЗКУ КРАЙОВОЇ ЗАДАЧІ 
Підставивши у співвідношення (6) представ-

лення функції )(τf  (10) отримаємо межі двосто-
ронньої критичної області для розв’язку крайової 
задачі (1)-(3), (5) 
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У випадку накладання лінійної регресії як умови 
на нижній границі шару, враховуючи формулу (6), 
можемо подати формулу (12) у вигляді 

±τ∆±τ=τ±

0
)(

~
),(),(

z
zfzuzu ff  

∑
∞

= 




+τ∆

−
±

10
)(~)1(2

m
f

m

m
f

yz
 

−

 ττ∆−+

=τ

τ
τ−

∫ 0

2 2
2

)(
~

)1( defAy
y

e
m

m
Ay

fm
m

m

Ay
 

)sin()(
~

)1(
22 zydefAy m

Ay
fm

m m



ττ∆−− ∫ τ . 

Тут 10
)(

~
pBff =τ∆

=τ
. 

Неозначені інтеграли 
0

2
)(

~
=τ

τ− ττ∆∫ def mAy
f  та 

ττ∆∫ τ− def mAy
f

2
)(

~
 не беруться в елементарних функ-

ціях, тоді знайдемо їх наближені вирази. Оскільки 
функція )(

~
τ∆ ff  є неперервно-диференційованою 

потрібну кількість разів, розкладемо її в ряд Тейлора 
на проміжку заданих експериментальних вимірювань 

],0[ nτ∈τ  в околі деякої точки t  з цього проміжку: 
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132 aAAb −= , для дво-
сторонньої критичної області отримаємо такі межі 
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Врахуємо, що 

0

2
3212),(lim),(lim

z
zpppBzuzu f τ+τ+±τ=τ

∞→τ

±

∞→τ
. 

Тоді для великих часів протікання процесу, який 
описується вихідною крайовою задачею, чим біль-
ше τ  тим більшою є ширина двосторонньої критич-
ної області, тобто функції ),( zu f τ±  не мають ста-
ціонарного режиму (часової асимптотики). 

На ширину двосторонньої критичної області най-
більший вплив має коефіцієнт B . Зокрема, чим мен-
ше значення B , тим вужча двостороння критична 
область для того самого рівня надійності β . І тим 
ширша двостороння критична область, чим більша дис-
персія прогнозованого значення лінійної регресії )(τf . 

V. ВПЛИВ СТАТИСТИЧНИХ ХАРАКТЕРИСТИК ВИБІРКИ 
НА ДВОСТОРОННЮ КРИТИЧНУ ОБЛАСТЬ РОЗВ’ЯЗКУ 

КРАЙОВОЇ ЗАДАЧІ 
Проаналізуємо вплив статистичних характеритик 

вибірки експериментальних даних на шукану 
функцію на нижній границі шару на конкретних 
прикладах. За базові параметри прийнято 1=A , 

1* =u , 00 =u , 10 =z . В розрахункових формулах 

ряди обчислені з точністю 710−=ε . 
На рис. 1 за даними табл. ІІ і рис. 2 за даними  

табл. ІІІ наведено розв’язки крайової задачі ),( zu τ , 
які нормовано на значення функції на верхній гра-
ниці шару 0=z , та відповідні двосторонні критичні 
області, обчислені за критерієм Фішера, для =τ 0.1 
(рис. а) і =τ 0.5 (рис. b). Тут криві 2-, 2+ обчислені 
для 9.0=β , криві 3-, 3+ - для 95.0=β , криві 4-, 
4+ - для 99.0=β . 
Мала вибірка, великий часовий інтервал, велика 
дисперсія 

Таблиця II.  ЕКСПЕРИМЕНТАЛЬНІ ДАНІ З ВЕЛИКОЮ ДИСПЕРСІЄЮ 
ДЛЯ ВЕЛИКОГО ЧАСОВОГО ІНТЕРВАЛУ  

 

 
Рисунок 1.  Розв’язки крайової задачі ),( zu τ та відповідні 

двосторонні критичні області для 1.0=τ  (рис. а) і 5.0=τ  (рис. b) 

Мала вибірка, малий часовий інтервал, велика 
дисперсія 

Таблиця III.  ЕКСПЕРИМЕНТАЛЬНІ ДАНІ З ВЕЛИКОЮ ДИСПЕРСІЄЮ 
ДЛЯ МАЛОГО ЧАСОВОГО ІНТЕРВАЛУ  

 

 
Рисунок 2.  Розв’язки крайової задачі ),( zu τ та відповідні 

двосторонні критичні області для 1.0=τ  (рис. а) і 5.0=τ  (рис. b) 

VI. ВИСНОВКИ 
Сформульовано крайову задачу перенесення для 

шару з ненульовою початковою умовою, дією ста-
ціонарного джерела на одній межі тіла та вибіркою 
експериментальних даних щодо шуканої функції на 
іншій. На основі експериментальних даних побудо-
вана лінійна регресійна модель методом найменших 
квадратів, яка розглядається як гранична умова. 
Розв'язок крайової задачі знайдено застосуванням 
скінченного інтегрального перетворення Фур'є.  

Отримано та проаналізовано формулу для визна-
чення двосторонньої критичної області на основі 
критерію Фішера. На конкретних прикладах дослі-
джено вплив статистичних характеристик вибірки 
експериментальних даних на шукану функцію на 
нижній межі шару. Розглянуто випадки вибірок з 
великими та малими об'ємами, що характеризують-
ся великою або малою дисперсією, на великих або 
малих інтервалах часу. 
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