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Анотація—Виходячи з сукупності числових зна-
чень концентрації домішкової речовини на одній з 
границь пористого шару, що виникає в процесі пере-
несення домішок у пористому середовищі, проведено 
відновлення, з використанням параметричного сімей-
ства функцій, граничної умови для задачі масоперене-
сення в шарі при наявності сорбції. Невідомі їх 
параметри знаходимо методами математичного про-
грамування. Розроблено програмний модуль, що дає 
можливість поводити обчислювальні експерименти. 
Проведено числові розрахунки відновленої функції для 
різних сукупностей числових даних та із запро-
понованими варіантами параметричних функцій, що 
дає можливість використовувати найбільш прийнятні 
з них у кожному з випадків вхідних даних. 

Ключові слова—визначення граничної умови, 
масоперенесення, параметричне сімейство функцій, 
нелінійна оптимізація. 

I.  ВСТУП 
Визначення функції концентрації домішкових 

частинок, що переносяться у пористому тілі, з рів-
няння дифузії-адвекції-сорбції за неповних гранич-
них чи початкових умов або параметрів рівнянь та 
при додатково відомих дискретних значеннях шу-
каної функції в області тіла чи на його границі на-
лежить до погано обумовлених задач. Проте з цим 
доводиться мати справу при розв’язанні прикладних 
задач. Наприклад, такі задачі характерні для гідро-
геології (відновлення потоків і концентрацій забруд-
ників), теплофізики (визначення теплового потоку 

без прямого вимірювання), хімічної технології (іден-
тифікація параметрів сорбції чи швидкості реакцій) 
та біомедицини (оцінка перенесення речовин у тка-
нинах за непрямими даними) [1, 4, 7]. У всіх цих 
випадках прямий експеримент не дозволяє безпосе-
редньо задати граничну умову на деякій поверхні, 
водночас відомі лише дискретні вимірювання поля 
(концентрації, температури, тиску тощо) у внутріш-
ніх точках або на границях. Це приводить до задач з 
неповними або неточними даними, які вимагають 
спеціальних методів регуляризації для забезпечення 
існування та єдиності розв’язку. 

При цьому особливий інтерес становлять моделі 
масоперенесення у пористих середовищах, де одно-
часно відбуваються дифузія, адвекція та сорбція. Такі 
процеси характерні для руху домішок у грунтових 
водах, фільтраційних шарах, пористих будівельних 
матеріалах, а також у багатьох технологічних 
установках.  

У даній роботі досліджено відновлення невідомої 
граничної умови для концентрації домішкових час-
тинок на одній з поверхонь пористого шару за відо-
мих ній сукупності дискретних значень концентрації. 

II. ПОСТАНОВКА ЗАДАЧІ 
Розглянуто шар пористої речовини, що займає 

область 00 xx ≤≤ . На поверхні 0=x , починаючи з 
деякого моменту часу, діє постійне джерело маси 
домішкових частинок, що проникають всередину 
шару, де відбувається їх дифузія, адвекція з постій-
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ною швидкістю та сорбція пов’язана з пористістю 
речовини. У такому випадку рівняння для функції 
концентрації домішкових частинок ),( txc  в середи-
ні шару можемо записати у вигляді [3]  
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де x – просторова координата ( 00 xx << ), t – час 
),0( >t  d – коефіцієнт дифузії домішки, v – швид-

кість адвективного перенесення, κ – коефіцієнт ін-
тенсивної сорбції.  

Прийнято, що в початковий момент часу відсутня 
домішкова речовина в тілі, тобто 

0)0,( =xc , 
а на верхній границі тіла діє стале джерело маси, 
домішкової речовини  

0),0( ctc = . 
Для коректної постановки задачі необхідна ще 

умова на границі 0xx = , де концентрація змінюється 
природнім чином, без спеціального зовнішнього 
впливу на процеси всередині шару. Нехай відомо 
(або можна виміряти) значення функції концентрації 

),( xtc  на нижній границі  x = x0  в певні моменти 
часу (Таблиця 1). 

ТАБЛИЦЯ І. ЕКСПЕРИМЕНТАЛЬНІ ЗНАЧЕННЯ ШУКАНОЇ ФУНКЦІЇ НА 
ГРАНИЦІ 0xx =  

t  1t  2t  3t  4t  5t   nt  

)(tF  0 0 0 )( 4tF  )( 5tF   )( ntF  

 

Тобто, маємо умову ),()( 0xtctF = . 
Таким чином отримано задачу з неповними дани-

ми, а отже потрібно визначитися з критерієм та зро-
бити припущення для обґрунтування вибору з мно-
жини допустимих функцій, що задовольняють відомі 
умови, найбільш прийнятної для нашого випадку.  

Маємо типову задачу з неповними даними. По-
трібно визначитися з критерієм вибору з множини 
допустимих неперервних функцій, що задоволь-
няють відомі умови, найбільш прийнятної для функ-
ції концентрації домішок на границі. 

III. ВИЗНАЧЕННЯ ГРАНИЧНОЇ УМОВИ НА НИЖНІЙ 
ПОВЕРХНІ ШАРУ 

Для зручності виконано перехід до безрозмірних 
змінних, що стискають часову та розтягують просторову 
осі [4]: tκ=τ , ( ) xd 2/1κ=ξ , *),(),( ctxcC =τξ , де 

*c  задана величина з розмірністю концентрації, а також 
прийнято 0>κ . Такий підхід не залежить від 
геометрії тіла чи характерних масштабів його мік-
ронеоднорідностей. 

Для відновлення зміни у часі функції концентрації 
на поверхні 0ξ=ξ  використано параметричне 
сімейство функцій ),,,,(),( 21 mi ααατΨ≡ατΨ  , 

де iα  ( mi ;1= ) – невідомі параметри, котрі потрібно 
встановити, щоб оптимально наблизитися до 
дискретних даних і не було суперечностей з іншими 
характеристиками задачі.  

У багатьох застосуваннях шукану граничну 
функцію подають у вигляді лінійної комбінації 
відомих функцій 

),()()(),,,,( 221121 τψα++τψα+τψα=ααατΨ mmm   

де iα  – шукані коефіцієнти, а )(τψ i  – відомі функції. 
Тоді визначальним може виявитися вибір цих ба-

зових функцій. Часто їх приймають у вигляді полі-
номів. Однак для моделі дифузії-адвекції-сорбції це 
не завжди коректно, оскільки їх лінійна комбінація не 
має стосунку до функцій концентрації домішкових 
частинок. 

Оскільки на одній з поверхонь шару концентрація 
встановлюється постійною і звідти частинки по-
ширюються в шарі, то потрібно орієнтуватися на 
відновлення функції, що спадає при віддаленні від 
цієї поверхні, але монотонно зростає з часом.  

Тому розглянуто більш загальний випадок, коли 
функції ),( iατΨ  від iα  є нелінійними і мають по-
трібні властивості.  

Як приклад наведемо наступні функції, що більш 
прийнятні для наближення концентрації, оскільки 
аналітичні розв’язки модельних задач дифузії-адвек-
ції-сорбції мають подібні складові 
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а також з метою порівняльного аналізу розглянуто 
параметричні функції, що містять поліноміальну, 
тригонометричну та обернену тригонометричну 
функції наступного вигляду 
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Тоді шукані параметри iα  у розглянутих функціях 
визначатимемо таким чином, щоб наблизитися до 
заданих значень ),( 0 jC τξ  в сенсі мінімуму серед-
ньоквадратичного відхилення  

( )∑
=

αατΨ−τξ=αα
n

j
mjjm CS

1

2
101 ),,,(),(),,(  ,   (1) 

за умов 0>αi . 

IV. МЕТОДИ ПОШУКУ ОПТИМАЛЬНИХ ПАРАМЕТРІВ 

Для оптимізації розв’язку ),,,( 21 mααα= α  не-
лінійної задачі найменших квадратів (1) застосовано 
наступні методи: 

Метод градієнтного спуску [5], алгоритм якого 
передбачає на кожному кроці оновлення параметрів 
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де )(k
iα  – значення параметра на k -ій ітерації, l  – 

швидкість навчання, тобто величина кроку на кож-
ній ітерації, iiS αα ∂∂ )(  – значення градієнту по 
кожному параметру. 

Алгоритм повторюється до досягнення однієї з 
умов зупинки, наприклад, досягнута максимальна 
кількість ітерацій, норма градієнта стала меншою за 
наперед задане значення, функція помилки практич-
но не змінюється, тощо. 

Метод Левенберга-Марквардта (Levenberg-
Marquardt, LM) [8] – це поєднання методу градієнт-
ного спуску та методу Ньютона для знаходження 
мінімуму функції, що базується на найменших 
квадратах. 

Для цього алгоритму на кожному кроці оновлює-
мо параметри за формулою 

ααα ∆+=+ )()1( k
i

k
i . 

Тут α∆  – величина оновлення параметрів, що ви-
значається як розв’язок рівняння  

rα TT JIJJ =∆λ+ )( , 
де J  – матриця Якобі (похідні залишків по пара-
метрах), r  – вектор лишків, елементи якого визна-
чаються як ),(),( 0 iiii Cr ατΨ−τξ= , λ  – коефіцієнт 
демпфування (регуляція перемикання алгоритму 
між методом градієнтного спуску та методом 
Ньютона), I  – одинична матриця. 

Метод довірчої області TRF (Trust Region 
Reflective) [9] передбачає, що на кожній ітерації 
обчислюється лінійна апроксимація функції залиш-
ків у точці  

ααrααr ∆+≈∆+ J)()( , 
та розв’язується задача найменших квадратів у до-
вірчій області 

2min αr
α

∆+
∆

J  при ∆≤∆α  ( ∆  – 

радіус довірчої області), враховуючи обмеження 
maxmin αααα ≤∆+≤ . Обчислюємо, наскільки добре 

цей крок покращує реальну функцію. Якщо покра-
щення суттєве, то приймаємо цей крок та збільшуємо 
довірчу область, у протилежному випадку крок 
відкидаємо та зменшуємо довірчу область. 

Метод Dogbox (Dogleg) [6], ключовою особли-
вістю якого є побудова кроку за алгоритмом 
Пауелла, що є опуклою комбінацією кроку Коші 
(крок вздовж напрямку найшвидгого спуску) та 
кроку Гауса-Ньютона. Метод Dogbox ефективний, 
оскільки потребує всього одного розв’язання ліній-
ної системи за ітерацію та часто виявляється більш 
стійким, ніж класичний підхід Гауса-Ньютона з 
пошуком уздовж прямої. 

Для порівняння також розглянуто метод прямого 
пошуку по сітці. Це простий, але обчислювально 
витратний підхід, який виконує повний перебір 
значень параметрів на заздалегідь заданій сітці 

maxmin ααα ≤≤ . Алгоритм оцінює цільову функцію у 
кожній точці цієї сітки та обирає параметри, що 
дають найкращий результат. 

Методи довірчої області та Dogbox дають змогу 
враховувати обмеження на шукані параметри, що 
особливо важливо під час розв’язання задач, у яких 
отримані розв’язки мають узгоджуватися з фізичними 
процесами та природними обмеженнями системи. 

V. ОБЧИСЛЮВАЛЬНИЙ ЕКСПЕРИМЕНТ І АНАЛІЗ 
РЕЗУЛЬТАТІВ 

Для проведення чисельної оптимізації параметрів 
функції, що задає граничну умову для концентрації 
домішкової речовини на нижній границі тіла, роз-
роблено програмний модуль, який реалізує описані 
вище алгоритми та забезпечує порівняння отри-
маних результатів для різних типів апроксимуючих 
функцій. Програмну реалізацію здійснено мовою 
Python; для створення графічного інтерфейсу корис-
тувача застосовано бібліотеку PyQt, яка надала 
можливість розробити інтерактивне середовище для 
задання параметрів, запуску обчислень та аналізу 
отриманих результатів. 

Для ілюстрації запропонованого підходу приве-
демо числові експерименти для невеликої кількості 
вхідних даних jC , поданих у Таблиці 2.  

Як приклад, в якості апроксимуючої функції ви-
користано функцію ),,,,( 43213 αααατΨ  та визначе-
но невідомі параметри, використовуючи дані цієї 
таблиці. 

ТАБЛИЦЯ II. ЕКСПЕРИМЕНТАЛЬНІ ЗНАЧЕННЯ ШУКАНОЇ ФУНКЦІЇ 
ДЛЯ ЧИСЕЛЬНОГО ДОСЛІДЖЕННЯ 

Серія 1 
jτ    Сj   
0 0 

0.07 0.0007 

0.14 0.0013 

0.21 0.0175 

0.28 0.0455 

0.35 0.062 

0.42 0.0725 

0.49 0.0905 

0.56 0.0965 

0.63 0.098 

0.7 0.098 
 

Серія 2 
jτ    Сj   
0 0 

0.05 0.001 

0.12 0.003 

0.20 0.015 

0.33 0.036 

0.47 0.055 

0.58 0.069 

0.66 0.082 

0.79 0.091 

0.92 0.095 

1.0 0.097 
 

 

В якості початкових значень шуканих параметрів 
прийнято )1,1,1,1(=α . Крім того, для методу пря-
мого пошуку по сітці використано такі значення для 
сітки minα  = 0.1, maxα  = 2, α∆  = 0.1. Зазначимо, що 
для даного числового експерименту додаткових 
обмежень на значення параметрів для методів до-
вірчої області та Dogleg не накладалось. Отримані 
параметри та відповідні середньоквадратичні по-
хибки для кожного методу, є наступними  

 

Серія 1 
LM метод: 

α1 = 0.032264042 
α2 = 48.543469981 
α3 = 0.840721664 
α4 = 1.544771283 

Похибка: 0.000062163 
 
TRF метод: 

α1 = 48.544331874 
α2 = 0.032264418 
α3 = 0.840722187 
α4 = -1.544777542 

Серія 2 
LM метод: 

α1 = -8.593619524 
α2 = 9.328616297 
α3 = 0.678155741 
α4 = 0.011723912 

Похибка: 0.000036942 
 
TRF метод: 

α1 = 0.056589635 
α2 = -1.797649114 
α3 = 0.558786769 
α4 = 1.547215129 
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Похибка: 0.000062163 
 
Dogbox метод: 

α1 = 0.032273309 
α2 = 48.563889855 
α3 = 0.840733581 
α4 = 1.544922621 

Похибка: 0.000062163 
 
Метод градієнтного 

спуску: 
α1 = -0.046294616 
α2 = 1.173746504 
α3 = 0.630153841 
α4 = 0.441725717 

Похибка: 0.000246033 
 

Метод пошуку по сітці: 
α1 = 0.100000000 
α2 = 0.400000000 
α3 = 0.600000000 
α4 = 0.600000000 

Похибка: 0.000413166 

Похибка: 0.000034807 
 
Dogbox метод: 

α1 = 0.049754130 
α2 = -57.31032440 
α3 = 0.803153472 
α4 = 2.194245302 

Похибка: 0.000120164 
 
Метод градієнтного 

спуску: 
α1 = -0.023059898 
α2 = 0.954022388 
α3 = 0.692908363 
α4 = 0.407743884 

Похибка: 0.000038651 
 
Метод пошуку по сітці: 

α1 = 0.100000000 
α2 = 0.100000000 
α3 = 0.600000000 
α4 = 0.500000000 

Похибка: 0.000113159 
 

На Рис. 1 подано графіки апроксимуючої функції 
),,,,( 43213 αααατΨ  для двох серій, параметри якої 

визначено зазначеними методами оптимізації. 
 

Серія 1 

 
Серія 2 

 
Рисунок 1.   Функція ),,,,( 43213 αααατΨ , що апроксимує 
експериментальні дані, з параметрами, знайденими різними 

методами оптимізації  

Для першого набору експериментальних даних, 
найменше значення похибки досягається для методів 
Левенберга-Марквардта, довірчої області та Dogbox 
методу, для другого – метод довірчої області. Проте, 
значення похідної від шуканої функції для першого 
набору даних ),,,,( 43213 αααατΨ  за одержаними 
параметрами для цих трьох методів у точці τ= 0.7 є 
від’ємними, що суперечить фізичному процесу, який 
розглядається (концентрація домішкової речовини 
на нижній границі тіла природньо має бути зрос-
таючою функцією). Відтак одним із додаткових кри-
теріїв вибору оптимальних параметрів для шуканої 
функції є умова невід’ємних значень її градієнта. 

Відповідно до цієї умови, для даного експери-
менту оптимальним вважаємо набір параметрів, 

знайдених методом градієнтного спуску. Водночас, 
даний критерій для методів довірчої області та 
Dogbox буде виконуватись, якщо під час виконання 
алгоритму додатково накласти обмеження на пара-
метри 0>αi . 

VI. ВИСНОВКИ 
У роботі розглянуто задачу відновлення невідомої 

граничної умови для концентрації домішкової речо-
вини на нижній поверхні пористого шару за експери-
ментальними даними. Побудовано математичну мо-
дель масоперенесення з урахуванням дифузії, адвекції 
та сорбції, і сформульовано задачу оптимізації па-
раметрів граничної умови з використанням неліній-
них параметричних сімейств функцій. Розроблено 
програмний модуль, який реалізує низку методів чи-
сельної оптимізації – градієнтний спуск, Левенберга-
Марквардта, довірчої області, Dogbox та пошук по 
сітці. Модуль забезпечує проведення обчислюваль-
них експериментів і порівняння результатів для різ-
них типів апроксимуючих функцій. На основі вибірки 
експериментальних даних, виконано числовий аналіз 
та отримано оптимальні значення параметрів для 
кількох методів та проаналізовано вплив вибору 
алгоритму на точність апроксимації і фізичну узго-
дженість розв’язку. Показано, що методи довірчої 
області та Dogbox дозволяють враховувати обмежен-
ня на параметри, а додатковий критерій невід’ємності 
градієнта забезпечує фізичну коректність відновленої 
граничної умови. 
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