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Abstract— Floating solar photovoltaic (FPV) systems 
provide an effective approach to increase renewable 
energy production while avoiding competition for land 
resources. This paper introduces a mathematical modeling 
framework for the automated identification and 
preliminary assessment of water bodies suitable for FPV 
deployment. The methodology combines satellite remote 
sensing data (Sentinel-2, Landsat-8) with geospatial 
analysis and mathematical modeling techniques. Water 
bodies are delineated using the Normalized Difference 
Water Index (NDWI), after which filtering criteria—such 
as minimum surface area, seasonal stability, vegetation 
cover, and proximity to infrastructure—are applied. A 
multi-criteria mathematical scoring model is developed to 
evaluate and rank the suitability of candidate sites. 
Preliminary experiments confirm the ability of the 
proposed model to detect and prioritize high-potential 
areas, thereby reducing the need for extensive field 
surveys. The research advances the integration of 
mathematical modeling and geospatial methods for 
renewable energy planning, with ongoing work directed 
toward refining model accuracy and environmental 
adaptability. 
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I. INTRODUCTION

The transition to renewable energy systems is a 
cornerstone of global strategies aimed at mitigating 
climate change and reducing dependence on fossil fuels. 
Solar photovoltaic (PV) technologies, in particular, have 
demonstrated remarkable growth due to their scalability 
and declining costs, contributing significantly to the 
realization of the United Nations Sustainable 
Development Goals (SDG 7: Affordable and Clean 
Energy; SDG 13: Climate Action) [1, 3]. Nevertheless, 
conventional land-based PV deployment often faces 
competition for land resources, particularly in densely 
populated or agriculturally intensive regions [3]. To 
address this limitation, floating solar photovoltaic (FPV) 
systems have emerged as an innovative solution, 
offering dual benefits of renewable electricity generation 
and water resource management through reduced 
evaporation and enhanced module efficiency due to 
natural cooling [3]. 

While FPV systems are increasingly recognized as a 
no-regret option for sustainable energy transitions, their 
large-scale deployment is constrained by the absence of 
systematic frameworks for site identification and 
evaluation. The spatial distribution, seasonal stability, 
and ecological sensitivity of water bodies introduce 
complex decision parameters, requiring approaches that 
extend beyond purely technical feasibility studies. In 
this regard, mathematical modeling integrated with 
geospatial analysis and artificial intelligence (AI) 
provides a robust pathway to quantify and optimize FPV 
potential. Recent advances in remote sensing—such as 
the use of Sentinel-2 and Landsat data with spectral 
indices like the Normalized Difference Water Index 
(NDWI) — enable efficient delineation of water 
surfaces [2, 4]. Complementary methodologies, 
including semantic segmentation [2, 4], 3D roof 
reconstruction [6], and digital surface model generation 
[5], have proven effective for rooftop PV studies and 
can be adapted to aquatic environments to ensure precise 
assessment of FPV opportunities. 

Building on these insights, this research proposes a 
modeling-based framework for the automated detection 
and evaluation of water bodies suitable for FPV 
deployment. The novelty lies in the integration of multi-
criteria mathematical modeling, combining remote 
sensing inputs, environmental constraints, and 
infrastructural proximity into a unified scoring system. 
This approach not only reduces reliance on costly field 
surveys but also enhances reproducibility and 
scalability, making it suitable for national and regional 
energy planning [1, 3, 5]. 

II. METHODOLOGY

The methodology developed in this study is structured 
to combine remote sensing data, geospatial analysis, and 
mathematical modeling in order to create a robust 
framework for identifying and ranking water bodies 
suitable for floating photovoltaic (FPV) deployment. 
The workflow consists of four interrelated stages: (i) 
data acquisition, (ii) water body delineation, (iii) 
filtering and classification, and (iv) multi-criteria 
suitability modeling. 

A. Data acquisition
Satellite imagery from Sentinel-2 MSI and Landsat-

8 OLI was selected as the primary data source, since 
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both missions provide global coverage, high revisit 
frequency, and appropriate spectral bands for water 
monitoring. These datasets have already demonstrated 
high efficiency in studies related to urban and rooftop 
solar assessments, where reliable and large-scale inputs 
are required [1, 3]. In addition, ancillary geospatial 
layers such as transportation networks and settlement 
footprints were included to assess the accessibility of 
candidate sites and their integration into existing energy 
systems [3]. 

B. Water body delineation 
To extract water bodies from multispectral imagery, 

the Normalized Difference Water Index (NDWI) was 
applied. This index, based on the contrast between green 
and near-infrared bands, is widely recognized for its 
ability to enhance water features while suppressing 
vegetation and built-up areas [2]. To improve reliability, 
temporal composites were generated to reduce the 
impact of clouds, atmospheric noise, and seasonal 
fluctuations in reflectance. Such strategies mirror 
established practices in rooftop solar potential 
estimation, where composite imagery increases 
detection robustness [1]. 

C. Filtering and classification 
Following the initial delineation, potential sites were 

filtered according to several criteria: minimum surface 
area, seasonal stability, vegetation encroachment, and 
proximity to infrastructure. These conditions are 
consistent with sustainability requirements and technical 
limitations of FPV deployment, reflecting 
methodologies previously validated in large-scale 
rooftop PV assessments [1, 3]. For boundary refinement 
and classification of ambiguous pixels, recent advances 
in semantic segmentation were integrated into the 
workflow [2, 4]. These techniques, successfully used for 
roof detection and land cover classification, improve the 
spatial precision of delineated water bodies, ensuring 
that only viable surfaces are retained for further 
analysis. 

D. Multi-criteria suitability modeling 
The final stage involves the development of a 

mathematical multi-criteria decision model that 
integrates geospatial indicators into a unified scoring 
system. The model assigns weights to parameters such 
as surface area, solar irradiation potential, hydrological 
stability, and infrastructural accessibility. This approach 
draws on methodologies applied in rooftop and 
distributed PV studies [1, 3, 5] but adapts them to 
aquatic environments. Furthermore, concepts from 3D 
reconstruction and digital surface model generation [5, 
6] were considered to strengthen the framework, 
highlighting opportunities for extending rooftop-based 
modeling approaches to FPV systems. The resulting 
suitability index provides a reproducible, scalable, and 
transparent tool for prioritizing water bodies at both 
regional and national levels. First, confirm that you have 
the correct template for your paper size. This template 
has been tailored for output on the A4 paper size.  

III. RESULTS AND DISCUSSIONS 
The developed methodology was applied to a pilot 

region characterized by a combination of large 
reservoirs, small ponds, and diverse infrastructural 
conditions. The main aim of this application was to test 
the ability of the workflow to generate reproducible 
results that could support decision-making in FPV 
deployment. Sentinel-2 imagery served as the primary 
data source, and the NDWI index was used to delineate 
water bodies. This approach allowed the removal of 
seasonal fluctuations and provided stable outlines of 
permanent water surfaces. Additional filtering 
eliminated waterlogged fields and artificial irrigation 
basins that, while detectable in single-date imagery, are 
not suitable for solar installations. 

The outcome of this detection and filtering process is 
presented in Figure 1, which shows a section of the 
study area with identified water bodies. The figure 
highlights how unsuitable objects (such as temporary 
wetlands and very small ponds) were removed, while 
large and stable reservoirs remained available for 
subsequent evaluation. 

 

Figure 1.  Example of delineated water bodies suitable for FPV 
deployment (Sentinel-2 composite, pilot region) 

The analysis of Figure 1 demonstrates that the 
NDWI-based approach is robust in terms of capturing 
the true spatial extent of water surfaces, even in 
landscapes with complex land cover. It is particularly 
important that the integration of seasonal composites 
minimized false positives: temporary water bodies 
caused by heavy rainfall events were excluded. 
Moreover, the boundaries of detected reservoirs were 
more precise when compared to manual mapping, as 
vegetation shadows and built-up areas were effectively 
filtered out. This confirms that the method can be scaled 
for larger territories without significant loss of accuracy. 

After detection, the candidate sites were 
systematically evaluated according to their 
morphometric parameters. These included area, stability, 
and vegetation encroachment, which are critical for the 
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technical feasibility of FPV deployment. The results are 
summarized in Table 1. 

TABLE I.  MORPHOMETRIC CHARACTERISTICS OF SELECTED WATER 
BODIES. 

Site ID Area, ha Stability, % Vegetation cover, % 

WB-01 145 92 4 

WB-02 110 88 7 

WB-03 78 85 10 

WB-04 52 80 15 

WB-05 37 77 18 

Table 1 shows clear differences in hydrological 
suitability among the candidate sites. The two largest 
reservoirs (WB-01 and WB-02) not only have 
significant surface area but also exhibit very high 
seasonal stability (above 88%). Their low vegetation 
presence (<10%) suggests that the effective usable area 
for solar panel deployment is maximized. Site WB-03, 
while smaller, maintains acceptable stability but shows 
moderate vegetation encroachment, which would reduce 
the available space for FPV installation. WB-04 and 
WB-05 represent the least promising cases: their small 
size, coupled with high vegetation presence (15–18%), 
substantially limits their technical potential. This 
analysis indicates that morphometric characteristics 
alone can eliminate unsuitable sites and prioritize the 
most promising ones. 

However, morphometric suitability is not sufficient 
for practical deployment. Infrastructure accessibility, 
especially proximity to the electricity grid, is equally 
critical. To capture this dimension, additional evaluation 
was performed, and the results are summarized in Table 
2, which includes distance to the grid, integrated 
suitability scores, and final ranking. 

TABLE II.  INFRASTRUCTURE PARAMETERS AND 
SUITABILITY RANKING OF SELECTED WATER BODIES. 

Site ID Distance to grid, km Suitability score Rank 

WB-01 1.8 0.87 1 

WB-02 2.3 0.81 2 

WB-03 3.1 0.76 3 

WB-04 4.2 0.69 4 

WB-05 5.0 0.63 5 

Table 2 highlights the decisive role of infrastructure 
in shaping the final ranking. WB-01 stands out as the 
best candidate, not only due to its large area and high 

stability but also because of its short distance (1.8 km) 
to the grid. This combination explains why it achieved 
the highest suitability score of 0.87. WB-02 also 
performed strongly, confirming that both size and 
accessibility drive high potential. WB-03 occupies a 
middle position, reflecting its moderate distance to 
infrastructure and average vegetation presence. By 
contrast, WB-04 and especially WB-05 were penalized 
by their remoteness from the grid (over 4 km), which 
significantly lowers their economic viability, despite 
acceptable hydrological conditions. 

Taken together, the two tables confirm that the joint 
evaluation of hydrological and infrastructural 
parameters provides a balanced picture of FPV 
suitability. If only morphometric data were considered, 
WB-03 could have been ranked higher; however, when 
accessibility is integrated, its relative importance 
decreases. Similarly, WB-05 demonstrates that even 
relatively stable ponds are poor candidates if located far 
from energy infrastructure. 

The results clearly show that the proposed 
methodology enables an objective, transparent, and 
scalable assessment of FPV potential. The combined use 
of NDWI-based detection, seasonal composites, and 
multi-criteria scoring ensures that unsuitable sites are 
systematically excluded while the most promising water 
bodies are prioritized. By presenting results in both 
graphical (Figure 1) and tabular forms (Tables 1 and 2), 
it becomes evident that FPV planning must rely on both 
morphometric and infrastructural dimensions to ensure 
realistic and sustainable deployment scenarios. 
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