

On the Solution of the Linear Set-valued Homogeneous Cauchy Problem with the Hukuhara Derivative

<https://doi.org/10.31713/MCIT.2025.077>

Andrej Plotnikov

Department of Information Technology and Applied Mathematics
Odessa State Academy of Civil Engineering and Architecture
Odessa, Ukraine
a-plotnikov@ukr.net

Abstract—The paper considers a linear set-valued homogeneous Cauchy problem with the Hukuhara derivative and provides its analytical solution.

Keywords—linear; Cauchy problem; se-valued mapping; Hukuhara derivative

I. INTRODUCTION

As is well established, the theory of set-valued differential equations finds extensive application in control theory, the theory of differential inclusions, and fuzzy systems (see [1–6] and references therein). At first sight, such equations resemble their classical counterparts; however, their analysis and solution inevitably require explicit consideration of their set-valued character. Consequently, classical methods and approaches developed for single-valued systems cannot, in general, be applied directly to the set-valued case, thereby necessitating the development of new or adapted methodologies. Moreover, the inherent set-valued structure of these equations gives rise to distinctive properties that warrant systematic investigation.

The report presents an analytical form of the solution for a linear homogeneous differential equation with the Hukuhara derivative.

II. PRELIMINARIES

Let R be the set of real numbers and R^n be the n -dimensional Euclidean space ($n \geq 2$). Denote by $\text{conv}(R^n)$ the set of nonempty compact and convex subsets of R^n .

For two given sets $X, Y \in \text{conv}(R^n)$ and $\lambda \in R$, the Minkowski sum and scalar multiple are defined by $X + Y = \{x + y \mid x \in X, y \in Y\}$ and $\lambda X = \{\lambda x \mid x \in X\}$.

The following properties hold:

- 1) $X + Y = Y + X \in \text{conv}(R^n)$, $\lambda X \in \text{conv}(R^n)$;
- 2) If $\alpha, \beta \geq 0$, then $\alpha X + \beta Y = (\alpha + \beta)X$;
- 3) $\lambda X + \lambda Y = \lambda(X + Y)$.

Also, let's add one more operation: the product of a matrix with a set $AX = \bigcup_{x \in X} Ax$, where $A \in R^{n \times n}$ is real matrix of size $n \times n$ and $X \in \text{conv}(R^n)$.

We will list some properties of this operation:

- 1) If $A \in R^{n \times n}$ and $X \in \text{conv}(R^n)$, then $AX \in \text{conv}(R^k)$, where $k = \text{rank}(A)$;
- 2) If $A \in R^{n \times n}$ and $X, Y \in \text{conv}(R^n)$, then $AX + AY = A(X + Y)$;
- 3) If $A, B \in R^{n \times n}$ and $X \in \text{conv}(R^n)$, then $(A + B)X \subseteq AX + BX$;
- 4) If $A \in R^{n \times n}$, $X, Y \in \text{conv}(R^n)$ and $X \subseteq Y$, then $AX \subseteq AY$.

Consider the Pompeiu-Hausdorff distance $h(\cdot, \cdot)$ given by

$$h(X, Y) = \min \{r \geq 0 \mid X \subset Y + B_r(0), Y \subset X + B_r(0)\},$$

where $B_r(0) = \{x \in R^n \mid \|x\| \leq r\}$ is the closed ball with radius r centered at the origin ($\|x\|$ denotes the Euclidean norm).

It is known that $(\text{conv}(R^n), h)$ is a complete metric space. However, $\text{conv}(R^n)$ is not a linear space since it does not contain inverse elements for the addition, and therefore difference is not well defined, i.e. if $A \in \text{conv}(R^n)$ and $A \neq \{a\}$, then $A + (-1)A \neq \{0\}$. As a consequence, alternative formulations for difference have been suggested. One of these alternatives is the Hukuhara difference [7].

Let $X, Y \in \text{conv}(R^n)$. A set $Z \in \text{conv}(R^n)$ such that $X = Y + Z$ is called a Hukuhara difference (H-

difference) of the sets X and Y and is denoted by $X \overset{H}{-} Y$.

In this case $X \overset{H}{-} X = \{0\}$ and also $(A+B) \overset{H}{-} B = A$ for any $A, B \in \text{conv}(R^n)$.

Simultaneously, M. Hukuhara introduced the concept of H-differentiability [7] for set-valued mappings by using the H-difference.

Definition 1 [7]. Let $X : [0, T] \rightarrow \text{conv}(R^n)$ and $t \in [0, T]$. We say that $X(\cdot)$ has a H-derivative $D_H X(t) \in \text{conv}(R^n)$ at $t \in (0, T)$, if for all $\Delta > 0$ that are sufficiently close to 0, the H-differences and the limits exist

$$\lim_{\Delta \rightarrow 0} \Delta^{-1} (X(t + \Delta) \overset{H}{-} X(t)) =$$

$$\lim_{\Delta \rightarrow 0} \Delta^{-1} (X(t) \overset{H}{-} X(t - \Delta)) = D_H X(t).$$

Theorem 1 [7]. If the mapping $X : [0, T] \rightarrow \text{conv}(R^n)$ is H-differentiable on $[0, T]$, then $X(t) = X(0) + \int_0^t D_H X(s) ds$, where the integral is understood in the sense of [7].

Corollary 1. If the set-valued mapping $X(\cdot)$ is H-differentiable on $[0, T]$, then $\text{diam}(X(\cdot))$ is a non-decreasing function on $[0, T]$.

Corollary 2. If the function $\text{diam}(X(\cdot))$ is a decreasing function on $[0, T]$, then the set-valued mapping $X(\cdot)$ is not H-differentiable on $[0, T]$.

III. LINEAR CAUCHY PROBLEM

Now, consider the Cauchy problem

$$D_H X(t) = A(t)X(t), \quad X(0) = X_0, \quad (1)$$

where $X : [0, T] \rightarrow \text{conv}(R^n)$ is the unknown set-valued mapping, $A : [0, T] \rightarrow R^{n \times n}$ is a continuous matrix function and $\det(A(t)) \neq 0$ for all $t \in [0, T]$.

The set-valued mapping $X(\cdot)$ will be called the solution of the system (1) on the interval $[0, T]$ if it is continuously and satisfies system (1) on $[0, T]$.

Theorem 2. System (1) has a unique solution of the form

$$X(t) = X_0 + \sum_{k=1}^{\infty} \left[\int_0^t A(\tau_k) \int_0^{\tau_k} A(\tau_{k-1}) \dots \int_0^{\tau_2} A(\tau_1) X_0 d\tau_1 \dots d\tau_k \right]$$

for all $t \in [0, T]$.

Remark. For all $k \geq 1$ and $t \in [0, T]$

$$\int_0^t A(\tau_k) \int_0^{\tau_k} A(\tau_{k-1}) \dots \int_0^{\tau_2} A(\tau_1) d\tau_1 \dots d\tau_k X_0 \subseteq$$

$$\int_0^t A(\tau_k) \int_0^{\tau_k} A(\tau_{k-1}) \dots \int_0^{\tau_2} A(\tau_1) X_0 d\tau_1 \dots d\tau_k.$$

Remark. If the matrices $A(t)$ and $A(s)$ are commutative matrices for all $t, s \in [0, T]$, i.e. the equality $A(t)A(s) = A(s)A(t)$ holds for all $t, s \in [0, T]$, then

$$X(t) = X_0 + \sum_{k=1}^{\infty} \int_s^t \frac{\left(\int_s^t A(\tau) d\tau \right)^{k-1}}{(k-1)!} A(s) X_0 ds$$

for all $t \in [0, T]$.

Remark. If the matrix $A(t) \equiv A$, then

$$X(t) = X_0 + \sum_{k=1}^{\infty} \left[\frac{A^k t^k}{k!} X_0 \right]$$

for all $t \in [0, T]$.

Remark. If the singular values of the matrix A are such that $\sigma_1 = \dots = \sigma_n = \sigma$ and $AX_0 = \sigma X_0$, then

$$X(t) = e^{\sigma t} X_0$$

for all $t \in [0, T]$.

REFERENCES

- [1] V. Lakshmikantham, T. Granna Bhaskar, and J. Vasundhara Devi, "Theory of set differential equations in metric spaces," Cambridge Scientific Publishers, Cambridge, 2006.
- [2] N.A. Perestyuk, V.A. Plotnikov, A.M. Samoilenko, and N.V. Skripnik, "Differential equations with impulse effects: multivalued right-hand sides with discontinuities," de Gruyter Stud. Math., vol. 40, Berlin/Boston, Walter De Gruyter GmbH& Co, 2011.
- [3] V.A. Plotnikov, A.V. Plotnikov, and A.N. Vityuk, "Differential equations with a multivalued right-hand side. Asymptotic methods," AstroPrint, Odessa, 1999.
- [4] A.V. Plotnikov and N.V. Skripnik, "Differential equations with "clear" and fuzzy multivalued right-hand side. Asymptotics methods," AstroPrint, Odessa, 2009.
- [5] A.A. Martynyuk, "Qualitative analysis of set-valued differential equations," Springer Nature, 2019. <https://doi.org/10.1007/978-3-030-07644-3>
- [6] A. Tolstonogov, "Differential inclusions in a Banach space," Kluwer Publishers, Dordrecht, 2000.
- [7] M. Hukuhara, "Integration des applications mesurables dont la valeur est un compact convexe," Funkc. Ekvacioj, Ser. Int., no. 10, 1967, pp. 205–223