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Abstract—This paper contains main results of the 
research of mass transfer problem in porous medium with 
saturation limit on graphs. The equation that describes 
this problem is based on the one-dimensional Richards-
Klute equation with additional mass balance equations. 
Among the results are existence theorem, stability result 
and effective numerical method for solving equation.   
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I.  INTRODUCTION (HEADING 1) 
Mass transfer process in porous medium with 

saturation limit is one of the most important processes 
which appear in the fields of agriculture and man-made 
disaster modeling. It is usually described by one-, two- 
or three-dimensional Richards-Klute equation [1,2]. For 
modeling of the mass transfer process in the system of 
pipes it is also possible to obtain the Richards-Klute 
equation on graph [3]. All of these equations are 
quasilinear elliptic-parabolic partial differential 
equations. Because of this, main instrument to solve 
these equations are numerical methods. They can be 
based on finite element method, finite volume method 
and finite difference method. They can also be modified 
using implicit/explicit time schemes and different forms 
of the Richards-Klute equation [4, 5]. 

Due to the properties of the equation, numerical 
methods for finding approximate solution require a large 
number of calculations, main part of which are 
calculations required to solve linear systems on each 
time step. Fast and accurate numerical method designed 
for specific type of the Richards-Klute equation is one 
of the most important tools for obtaining a more 
efficient way to model the mass transfer process. 

II. RICHARDS-KLUTE EQUATION ON GRAPH 
Let’s consider graph G = (V,E) embedded in three-

dimensional space. The edges e∈E of this graph can be 
interpreted as the pipes in the irrigation system, and the 
vertices v∈V are the connections of these pipes. Then 
let’s consider the Richards-Klute equation on graph G 
[3]. This equation is based on the one-dimensional 
Richards-Klute equation on each edge, continuity 
conditions of solution in vertices and mass balance 
equations in vertices. 
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Here t is time [s], h is a pressure head [m] 
(unknown), Ce and Ke are the characteristics of the 
porous medium in the pipe e, gz is the gravity impact 
and its value depends on the direction of the pipe in the 
gravity field, Le is length of the pipe, δe = 0 or Le 
depending on which end of e is incident to v, Inc(v) is a 
set of edges which are incident to vertex v, qe is a 
positive flux through the boundary δe of the edge e.  

For modeling the mass transfer process on the graph, 
we also must add initial condition on pressure head on 
all edges and boundary conditions of first or second kind 
on some of the vertices. By doing this, we obtain a 
system of equation which is called Richards-Klute 
equation on graph.  

Equations (1)-(3) can be easily transformed to 
system of linear algebraic equations for numerical 
methods. Equations on edges (1) can be discretized in 
the same way as one-dimensional Richards-Klute 
equation. Continuity conditions (2) simply transform 
into equations between nodes of different adjacent 
edges. Mass balance equation (3) for every vertex v can 
be discretized  in the following way. 
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where m0 is number of edges incident to v, for which 
δe = 0, mN is number of edges incident to v, for which δe 
= Le, j is current and j+1 is the next time step, Δxi is the 
spatial step, gi,z and Ki are calculated at the 
corresponding point of edge ei. 
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III. EXISTENCE AND STABILITY RESULTS 
There is classic result of existence of the weak 

solution of one-, two- and three-dimensional Richards-
Klute equations presented in [6]. It is based on some 
conditions on properties of porous media and initial and 
boundary functions. These conditions can be modified 
for Richards-Klute equation on graph [7]. Using these 
modified conditions, one can prove the next result. 

Theorem 1. Under the conditions listed in [7] there is 
a weak solution of Richards-Klute equation on graph.  

 To obtain stability result, we need to add one more 
condition. 

 1 2 1 2( ) ( ) ,K h K h c h h− ≤ −  (5) 

where c is constant. Then we can prove the stability 
result.  

Theorem 2 [7]. Let H1 and H2 are solutions of 
Richards-Klute equation on graph at time T with initial 
conditions h1 and h2 respectively. And let θ(h) is a 
function between pressure head and saturation level 
(∂θ/∂h=C(h)). Then  
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IV. NUMERICAL METHOD 
Using (4) and standard discretization methods for 

equations (1)-(2) we can transform the Richards-Klute 
equation on graph to the system of linear algebraic 
equations. Thus, modeling process is just solving 
obtained system for every time step.  

Matrix of the obtained system on fixed time step has 
the following properties: 

• it is sparse; 

• it is symmetric; 

• it is diagonally dominant. 

These properties allow us to use fast numerical 
methods for sparse matrices to solve linear system (like 
Seidel method or conjugate gradient method). But if 
graph is a simple path, the Richards-Klute equation on 
graph can be transformed into the one-dimensional 
Richards-Klute equation and then the direct Thomas 
method can be used. At the same time, if graph is a 
simple cycle, then modified Thomas method [8] can be 
used. Based on original and modified Thomas methods 
one can build direct numerical method for solving 
Richards-Klute equation on graph [9]. 

Let’s consider graph G’ which represents nodes of 
the discretization of the graph G and which is related to 
linear system in the following way.  

 0 ( ),ija i Adj j≠ ⇔ ∈  (3) 
where Adj(j) is a set of nodes that are adjacent to 

node j in graph G’. Then the modified Thomas method 
for graphs is just repeating following 3 steps: 

• find the longest simple path (cycle) in G’; 

• solve linear subsystem for found path (cycle) 
using original (modified for cycles) Thomas 
method considering all matrix coefficients 
which connect nodes from found path (cycle) 
and other nodes of G’; 

• exclude nodes of found path (cycle) from graph 
G’ and exclude corresponding linear equations 
from system.  

As long as one makes these three steps the linear 
system size gets smaller, so we can say that after finite 
number of steps, which depends only on properties of 
graph G, one can transform original system to small 
system, size of which also depends only on properties of 
graph G, but not on the spatial discretization parameters 
or number of vertices of graph G’. This method is also 
direct and stable, because it is based on direct and stable 
original and modified for cycles Thomas methods.  

V. CONCLUSIONS 
A mass transfer process in porous media with 

saturation limit is described using Richards-Klute 
equation. Using additional mass balance equations the 
Richards-Klute equation on graph is obtained. Existence 
and stability result are given. A direct stable numerical 
method for solving linear systems for finding 
approximate solution of the Richards-Klute equation on 
graph was built.  
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